ABSTRACT: Used engine oil (UEO) constitutes a serious environmental problem due to the difficulty of disposal off or reuse. Ten bacterial strains with biodegradation potential were isolated from UEO-contaminated soil sample using enrichment technique. Two strains which exhibited the highest degradation %, 51 ± 1.2 and 48 ± 1.5, respectively, were selected. Based on the morphological, biochemical characteristics and 16S rRNA sequence analysis, they were identified as Ochrobactrum anthropi HM-1 (accession no: KR360745) and Citrobacter freundii HM-2 (accession no: KR360746). The different conditions which may influence their biodegradation activity, including UEO concentration (1-6 %, v/v), inoculum size (0.5-4 %, v/v), initial pH (6-8), incubation temperature (25-45 °C), and rotation speed (0-200 rpm), were evaluated. The optimum conditions were found to be 2 % UEO, 2 % inoculum size, pH 7.5, incubation temperature 37 °C, and 150 rpm. Under the optimized conditions, strains HM-1, HM-2, and their mixture efficiently degraded UEO, they achieved 65 ± 2.2, 58 ± 2.1, and 80 ± 1.9 %, respectively, after 21 days of incubation. Biodegradation of UEO was confirmed by employing gas chromatography analysis. Gamma radiation (1.5 kGy) enhanced the degradation efficiency of irradiated bacterial mixture (95 ± 2.1 %) as compared to non-irradiated (79 ± 1.6 %). Therefore, strains HM-1 and HM-2 can be employed to develop a cost-effective method for bioremediation of used engine-oil-polluted soil.