Unknown

Dataset Information

0

Binding Sites for Acylated Trehalose Analogs of Glycolipid Ligands on an Extended Carbohydrate Recognition Domain of the Macrophage Receptor Mincle.


ABSTRACT: The macrophage receptor mincle binds to trehalose dimycolate on the surface of Mycobacterium tuberculosis Signaling initiated by this interaction leads to cytokine production, which underlies the ability of mycobacteria to evade the immune system and also to function as adjuvants. In previous work the mechanism for binding of the sugar headgroup of trehalose dimycolate to mincle has been elucidated, but the basis for enhanced binding to glycolipid ligands, in which hydrophobic substituents are attached to the 6-hydroxyl groups, has been the subject of speculation. In the work reported here, the interaction of trehalose derivatives with bovine mincle has been probed with a series of synthetic mimics of trehalose dimycolate in binding assays, in structural studies by x-ray crystallography, and by site-directed mutagenesis. Binding studies reveal that, rather than reflecting specific structural preference, the apparent affinity of mincle for ligands with hydrophobic substituents correlates with their overall size. Structural and mutagenesis analysis provides evidence for interaction of the hydrophobic substituents with multiple different portions of the surface of mincle and confirms the presence of three Ca2+-binding sites. The structure of an extended portion of the extracellular domain of mincle, beyond the minimal C-type carbohydrate recognition domain, also constrains the way the binding domains may interact on the surface of macrophages.

SUBMITTER: Feinberg H 

PROVIDER: S-EPMC5076529 | biostudies-literature | 2016 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Binding Sites for Acylated Trehalose Analogs of Glycolipid Ligands on an Extended Carbohydrate Recognition Domain of the Macrophage Receptor Mincle.

Feinberg Hadar H   Rambaruth Neela D S ND   Jégouzo Sabine A F SA   Jacobsen Kristian M KM   Djurhuus Rasmus R   Poulsen Thomas B TB   Weis William I WI   Taylor Maureen E ME   Drickamer Kurt K  

The Journal of biological chemistry 20160819 40


The macrophage receptor mincle binds to trehalose dimycolate on the surface of Mycobacterium tuberculosis Signaling initiated by this interaction leads to cytokine production, which underlies the ability of mycobacteria to evade the immune system and also to function as adjuvants. In previous work the mechanism for binding of the sugar headgroup of trehalose dimycolate to mincle has been elucidated, but the basis for enhanced binding to glycolipid ligands, in which hydrophobic substituents are a  ...[more]

Similar Datasets

| S-EPMC7372699 | biostudies-literature
| S-EPMC3789947 | biostudies-literature
| S-EPMC5691301 | biostudies-literature
| S-EPMC6403188 | biostudies-literature
| S-EPMC4393326 | biostudies-literature
| S-EPMC3808641 | biostudies-literature
| S-EPMC4211601 | biostudies-literature
| S-EPMC3320589 | biostudies-literature
| S-EPMC2583334 | biostudies-literature
| S-EPMC2072868 | biostudies-literature