Unknown

Dataset Information

0

Enhancing electric-field control of ferromagnetism through nanoscale engineering of high-Tc MnxGe1-x nanomesh.


ABSTRACT: Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (Tc), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique MnxGe1-x nanomeshes fabricated by nanosphere lithography, in which a Tc above 400?K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ?8,000% at 30?K to 75% at 300?K at 4?T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high Tc in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications.

SUBMITTER: Nie T 

PROVIDER: S-EPMC5080415 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhancing electric-field control of ferromagnetism through nanoscale engineering of high-T<sub>c</sub> Mn<sub>x</sub>Ge<sub>1-x</sub> nanomesh.

Nie Tianxiao T   Tang Jianshi J   Kou Xufeng X   Gen Yin Y   Lee Shengwei S   Zhu Xiaodan X   He Qinglin Q   Chang Li-Te LT   Murata Koichi K   Fan Yabin Y   Wang Kang L KL  

Nature communications 20161020


Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (T<sub>c</sub>), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique Mn<sub  ...[more]

Similar Datasets

| S-EPMC5735161 | biostudies-literature
| S-EPMC5459075 | biostudies-other
| S-EPMC4800415 | biostudies-literature
| S-EPMC4870684 | biostudies-other
| S-EPMC10303475 | biostudies-literature
| S-EPMC3623848 | biostudies-literature
| S-EPMC8495869 | biostudies-literature
| S-EPMC4306914 | biostudies-literature
| S-EPMC4246203 | biostudies-literature
| S-EPMC10640582 | biostudies-literature