Unknown

Dataset Information

0

Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer's disease.


ABSTRACT: We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer's disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala), a subcortical atrophy factor (striatum, thalamus, and cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal, and lateral occipital cortices). To explore the influence of each factor in early AD, atrophy factor compositions were inferred in beta-amyloid-positive (A?+) mild cognitively impaired (MCI) and cognitively normal (CN) participants. All three factors were associated with memory decline across the entire clinical spectrum, whereas the cortical factor was associated with executive function decline in A?+ MCI participants and AD dementia patients. Direct comparison between factors revealed that the temporal factor showed the strongest association with memory, whereas the cortical factor showed the strongest association with executive function. The subcortical factor was associated with the slowest decline for both memory and executive function compared with temporal and cortical factors. These results suggest that distinct patterns of atrophy influence decline across different cognitive domains. Quantification of this heterogeneity may enable the computation of individual-level predictions relevant for disease monitoring and customized therapies. Factor compositions of participants and code used in this article are publicly available for future research.

SUBMITTER: Zhang X 

PROVIDER: S-EPMC5081632 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer's disease.

Zhang Xiuming X   Mormino Elizabeth C EC   Sun Nanbo N   Sperling Reisa A RA   Sabuncu Mert R MR   Yeo B T Thomas BT  

Proceedings of the National Academy of Sciences of the United States of America 20161004 42


We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer's disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala),  ...[more]

Similar Datasets

| S-EPMC10578328 | biostudies-literature
| S-EPMC6234901 | biostudies-other
| S-EPMC7713727 | biostudies-literature
| S-EPMC10781650 | biostudies-literature
| S-EPMC6939605 | biostudies-literature
| S-EPMC6276935 | biostudies-literature
| S-EPMC11372067 | biostudies-literature
| S-EPMC10723286 | biostudies-literature
| S-EPMC2943433 | biostudies-literature
| S-EPMC7425455 | biostudies-literature