Unknown

Dataset Information

0

Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP).


ABSTRACT: 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) are novel brominated flame retardants used in consumer products. A parallelogram approach was used to predict human dermal absorption and flux for EH-TBB and BEH-TEBP. [14C]-EH-TBB or [14C]-BEH-TEBP was applied to human or rat skin at 100nmol/cm2 using a flow-through system. Intact rats received analogous dermal doses. Treated skin was washed and tape-stripped to remove "unabsorbed" [14C]-radioactivity after continuous exposure (24h). "Absorbed" was quantified using dermally retained [14C]-radioactivity; "penetrated" was calculated based on [14C]-radioactivity in media (in vitro) or excreta+tissues (in vivo). Human skin absorbed EH-TBB (24±1%) while 0.2±0.1% penetrated skin. Rat skin absorbed more (51±10%) and was more permeable (2±0.5%) to EH-TBB in vitro; maximal EH-TBB flux was 11±7 and 102±24pmol-eq/cm2/h for human and rat skin, respectively. In vivo, 27±5% was absorbed and 13% reached systemic circulation after 24h (maximum flux was 464±65pmol-eq/cm2/h). BEH-TEBP in vitro penetrance was minimal (<0.01%) for rat or human skin. BEH-TEBP absorption was 12±11% for human skin and 41±3% for rat skin. In vivo, total absorption was 27±9%; 1.2% reached systemic circulation. In vitro maximal BEH-TEBP flux was 0.3±0.2 and 1±0.3pmol-eq/cm2/h for human and rat skin; in vivo maximum flux for rat skin was 16±7pmol-eq/cm2/h. EH-TBB was metabolized in rat and human skin to tetrabromobenzoic acid. BEH-TEBP-derived [14C]-radioactivity in the perfusion media could not be characterized. <1% of the dose of EH-TBB and BEH-TEHP is estimated to reach the systemic circulation following human dermal exposure under the conditions tested. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE:2-Ethylhexyl 2,3,4,5-tetrabromobenzoate (PubChem CID: 71316600; CAS No. 183658-27-7 FW: 549.92g/mol logPest: 7.73-8.75 (12)) Abdallah et al., 2015a. Other published abbreviations for 2-ethylhexyl-2,3,4,5-tetrabromobenzoate are TBB EHTeBB or EHTBB Abdallah and Harrad, 2011. bis(2-ethylhexyl) tetrabromophthalate (PubChem CID: 117291; CAS No. 26040-51-7 FW: 706.14g/mol logPest: 9.48-11.95 (12)). Other published abbreviations for bis(2-ethylhexyl)tetrabromophthalate are TeBrDEPH TBPH or BEHTBP.

SUBMITTER: Knudsen GA 

PROVIDER: S-EPMC5090262 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP).

Knudsen Gabriel A GA   Hughes Michael F MF   Sanders J Michael JM   Hall Samantha M SM   Birnbaum Linda S LS  

Toxicology and applied pharmacology 20161011


2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) are novel brominated flame retardants used in consumer products. A parallelogram approach was used to predict human dermal absorption and flux for EH-TBB and BEH-TEBP. [<sup>14</sup>C]-EH-TBB or [<sup>14</sup>C]-BEH-TEBP was applied to human or rat skin at 100nmol/cm<sup>2</sup> using a flow-through system. Intact rats received analogous dermal doses. Treated skin was washed and tape-stripped to  ...[more]

Similar Datasets

| S-EPMC3398233 | biostudies-literature
2020-07-15 | GSE153366 | GEO
| S-EPMC4349376 | biostudies-literature
| S-EPMC5859252 | biostudies-literature
| S-EPMC4996073 | biostudies-literature
| S-EPMC3548273 | biostudies-literature
2020-07-15 | GSE153361 | GEO
| S-EPMC8296256 | biostudies-literature
| S-EPMC8168711 | biostudies-literature
| S-EPMC5139073 | biostudies-literature