Unknown

Dataset Information

0

Decoding of top-down cognitive processing for SSVEP-controlled BMI.


ABSTRACT: We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant's visual cortex uniformly with equal probability, the participant's intention groups the strokes and thus perceives a 'letter Gestalt'. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting.

SUBMITTER: Min BK 

PROVIDER: S-EPMC5093690 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Decoding of top-down cognitive processing for SSVEP-controlled BMI.

Min Byoung-Kyong BK   Dähne Sven S   Ahn Min-Hee MH   Noh Yung-Kyun YK   Müller Klaus-Robert KR  

Scientific reports 20161103


We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape  ...[more]

Similar Datasets

| S-EPMC9314421 | biostudies-literature
| S-EPMC4767540 | biostudies-literature
| 67720 | ecrin-mdr-crc
| S-EPMC7814753 | biostudies-literature
| S-EPMC7264380 | biostudies-literature
| S-EPMC9199200 | biostudies-literature
| S-EPMC4830475 | biostudies-literature
| S-EPMC3258226 | biostudies-literature
| S-EPMC10283151 | biostudies-literature
| S-EPMC10591868 | biostudies-literature