Unknown

Dataset Information

0

On-chip, multisite extracellular and intracellular recordings from primary cultured skeletal myotubes.


ABSTRACT: In contrast to the extensive use of microelectrode array (MEA) technology in electrophysiological studies of cultured neurons and cardiac muscles, the vast field of skeletal muscle research has yet to adopt the technology. Here we demonstrate an empowering MEA technology for high quality, multisite, long-term electrophysiological recordings from cultured skeletal myotubes. Individual rat skeletal myotubes cultured on micrometer sized gold mushroom-shaped microelectrode (gM?E) based MEA tightly engulf the gM?Es, forming a high seal resistance between the myotubes and the gM?Es. As a consequence, spontaneous action potentials generated by the contracting myotubes are recorded as extracellular field potentials with amplitudes of up to 10?mV for over 14 days. Application of a 10?ms, 0.5-0.9?V voltage pulse through the gM?Es electroporated the myotube membrane, and transiently converted the extracellular to intracellular recording mode for 10-30?min. In a fraction of the cultures stable attenuated intracellular recordings were spontaneously produced. In these cases or after electroporation, subthreshold spontaneous potentials were also recorded. The introduction of the gM?E-MEA as a simple-to-use, high-quality electrophysiological tool together with the progress made in the use of cultured human myotubes opens up new venues for basic and clinical skeletal muscle research, preclinical drug screening, and personalized medicine.

SUBMITTER: Rabieh N 

PROVIDER: S-EPMC5095645 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

On-chip, multisite extracellular and intracellular recordings from primary cultured skeletal myotubes.

Rabieh Noha N   Ojovan Silviya M SM   Shmoel Nava N   Erez Hadas H   Maydan Eilon E   Spira Micha E ME  

Scientific reports 20161104


In contrast to the extensive use of microelectrode array (MEA) technology in electrophysiological studies of cultured neurons and cardiac muscles, the vast field of skeletal muscle research has yet to adopt the technology. Here we demonstrate an empowering MEA technology for high quality, multisite, long-term electrophysiological recordings from cultured skeletal myotubes. Individual rat skeletal myotubes cultured on micrometer sized gold mushroom-shaped microelectrode (gMμE) based MEA tightly e  ...[more]

Similar Datasets

| S-EPMC2838843 | biostudies-literature
| S-EPMC5738411 | biostudies-literature
| S-EPMC5642690 | biostudies-literature
| S-EPMC3293943 | biostudies-literature
| S-EPMC196923 | biostudies-literature
| S-EPMC4891817 | biostudies-other
| S-EPMC6909916 | biostudies-literature
| S-EPMC3375511 | biostudies-literature
| S-EPMC4568476 | biostudies-literature
| S-EPMC9144336 | biostudies-literature