Unknown

Dataset Information

0

Random forest regression for magnetic resonance image synthesis.


ABSTRACT: By choosing different pulse sequences and their parameters, magnetic resonance imaging (MRI) can generate a large variety of tissue contrasts. This very flexibility, however, can yield inconsistencies with MRI acquisitions across datasets or scanning sessions that can in turn cause inconsistent automated image analysis. Although image synthesis of MR images has been shown to be helpful in addressing this problem, an inability to synthesize both T2-weighted brain images that include the skull and FLuid Attenuated Inversion Recovery (FLAIR) images has been reported. The method described herein, called REPLICA, addresses these limitations. REPLICA is a supervised random forest image synthesis approach that learns a nonlinear regression to predict intensities of alternate tissue contrasts given specific input tissue contrasts. Experimental results include direct image comparisons between synthetic and real images, results from image analysis tasks on both synthetic and real images, and comparison against other state-of-the-art image synthesis methods. REPLICA is computationally fast, and is shown to be comparable to other methods on tasks they are able to perform. Additionally REPLICA has the capability to synthesize both T2-weighted images of the full head and FLAIR images, and perform intensity standardization between different imaging datasets.

SUBMITTER: Jog A 

PROVIDER: S-EPMC5099106 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Random forest regression for magnetic resonance image synthesis.

Jog Amod A   Carass Aaron A   Roy Snehashis S   Pham Dzung L DL   Prince Jerry L JL  

Medical image analysis 20160831


By choosing different pulse sequences and their parameters, magnetic resonance imaging (MRI) can generate a large variety of tissue contrasts. This very flexibility, however, can yield inconsistencies with MRI acquisitions across datasets or scanning sessions that can in turn cause inconsistent automated image analysis. Although image synthesis of MR images has been shown to be helpful in addressing this problem, an inability to synthesize both T<sub>2</sub>-weighted brain images that include th  ...[more]

Similar Datasets

| S-EPMC4147854 | biostudies-literature
| S-EPMC6050737 | biostudies-literature
| S-EPMC8588039 | biostudies-literature
| S-EPMC9138977 | biostudies-literature
| S-EPMC6102097 | biostudies-literature
| S-EPMC5852600 | biostudies-literature
| S-EPMC7254520 | biostudies-literature
| S-EPMC6925115 | biostudies-literature
| S-EPMC5601223 | biostudies-literature
| S-EPMC9817173 | biostudies-literature