Unknown

Dataset Information

0

The Comparatively Proteomic Analysis in Response to Cold Stress in Cassava Plantlets.


ABSTRACT: Cassava (Manihot esculenta Crantz) is a tropical root crop and sensitive to low temperature. However, it is poorly to know how cassava can modify its metabolism and growth to adapt to cold stress. An investigation aimed at a better understanding of cold-tolerant mechanism of cassava plantlets was carried out with the approaches of physiology and proteomics in the present study. The principal component analysis of seven physiological characteristics showed that electrolyte leakage (EL), chlorophyll content, and malondialdehyde (MDA) may be the most important physiological indexes for determining cold-resistant abilities of cassava. The genome-wide proteomic analysis showed that 20 differential proteins had the same patterns in the apical expanded leaves of cassava SC8 and Col1046. They were mainly related to photosynthesis, carbon metabolism and energy metabolism, defense, protein synthesis, amino acid metabolism, signal transduction, structure, detoxifying and antioxidant, chaperones, and DNA-binding proteins, in which 40 % were related with photosynthesis. The remarkable variation in photosynthetic activity and expression level of peroxiredoxin is closely linked with expression levels of proteomic profiles. Moreover, analysis of differentially expressed proteins under cold stress is an important step toward further elucidation of mechanisms of cold stress resistance.

SUBMITTER: An F 

PROVIDER: S-EPMC5099363 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Comparatively Proteomic Analysis in Response to Cold Stress in Cassava Plantlets.

An Feifei F   Li Genghu G   Li Qing X QX   Li Kaimian K   Carvalho Luiz J C B LJ   Ou Wenjun W   Chen Songbi S  

Plant molecular biology reporter 20160506 6


Cassava (<i>Manihot esculenta</i> Crantz) is a tropical root crop and sensitive to low temperature. However, it is poorly to know how cassava can modify its metabolism and growth to adapt to cold stress. An investigation aimed at a better understanding of cold-tolerant mechanism of cassava plantlets was carried out with the approaches of physiology and proteomics in the present study. The principal component analysis of seven physiological characteristics showed that electrolyte leakage (EL), ch  ...[more]

Similar Datasets

| S-EPMC9728241 | biostudies-literature
| S-EPMC6359463 | biostudies-literature
| S-EPMC7230406 | biostudies-literature
| S-EPMC5991693 | biostudies-literature
| S-EPMC6359183 | biostudies-literature
2014-07-05 | GSE52177 | GEO
| S-EPMC2842255 | biostudies-literature
| S-EPMC5513928 | biostudies-literature
| S-EPMC3784457 | biostudies-literature
| S-EPMC4766708 | biostudies-literature