Unknown

Dataset Information

0

Random synaptic feedback weights support error backpropagation for deep learning.


ABSTRACT: The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning.

SUBMITTER: Lillicrap TP 

PROVIDER: S-EPMC5105169 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Random synaptic feedback weights support error backpropagation for deep learning.

Lillicrap Timothy P TP   Cownden Daniel D   Tweed Douglas B DB   Akerman Colin J CJ  

Nature communications 20161108


The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be  ...[more]

Similar Datasets

| S-EPMC4739747 | biostudies-literature
| S-EPMC7902857 | biostudies-literature
| S-EPMC7055566 | biostudies-literature
| S-EPMC6561704 | biostudies-literature
| S-EPMC8791835 | biostudies-literature
2024-07-17 | GSE268261 | GEO
| S-EPMC4382991 | biostudies-literature
| S-EPMC10066328 | biostudies-literature
| S-EPMC5670147 | biostudies-literature
| S-EPMC5277024 | biostudies-literature