Unknown

Dataset Information

0

The Effects of Pharmacological Compounds on Beat Rate Variations in Human Long QT-Syndrome Cardiomyocytes.


ABSTRACT: Healthy human heart rate fluctuates overtime showing long-range fractal correlations. In contrast, various cardiac diseases and normal aging show the breakdown of fractal complexity. Recently, it was shown that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) intrinsically exhibit fractal behavior as in humans. Here, we investigated the fractal complexity of hiPSC-derived long QT-cardiomyocytes (LQT-CMs). We recorded extracellular field potentials from hiPSC-CMs at baseline and under the effect of various compounds including ?-blocker bisoprolol, ML277, a specific and potent IKs current activator, as well as JNJ303, a specific IKs blocker. From the peak-to-peak-intervals, we determined the long-range fractal correlations by using detrended fluctuation analysis. Electrophysiologically, the baseline corrected field potential durations (cFPDs) were more prolonged in LQT-CMs than in wildtype (WT)-CMs. Bisoprolol did not have significant effects to the cFPD in any CMs. ML277 shortened cFPD in a dose-dependent fashion by 11 % and 5-11 % in WT- and LQT-CMs, respectively. JNJ303 prolonged cFPD in a dose-dependent fashion by 22 % and 7-13 % in WT- and LQT-CMs, respectively. At baseline, all CMs showed fractal correlations as determined by short-term scaling exponent ?. However, in all CMs, the ? was increased when pharmacological compounds were applied indicating of breakdown of fractal complexity. These findings suggest that the intrinsic mechanisms contributing to the fractal complexity are not altered in LQT-CMs. The modulation of IKs channel and ?1-adrenoreceptors by pharmacological compounds may affect the fractal complexity of the hiPSC-CMs.

SUBMITTER: Kuusela J 

PROVIDER: S-EPMC5106508 | biostudies-literature | 2016 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Effects of Pharmacological Compounds on Beat Rate Variations in Human Long QT-Syndrome Cardiomyocytes.

Kuusela Jukka J   Kim Jiyeong J   Räsänen Esa E   Aalto-Setälä Katriina K  

Stem cell reviews and reports 20161201 6


Healthy human heart rate fluctuates overtime showing long-range fractal correlations. In contrast, various cardiac diseases and normal aging show the breakdown of fractal complexity. Recently, it was shown that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) intrinsically exhibit fractal behavior as in humans. Here, we investigated the fractal complexity of hiPSC-derived long QT-cardiomyocytes (LQT-CMs). We recorded extracellular field potentials from hiPSC-CMs at baseline  ...[more]

Similar Datasets

| S-EPMC3059096 | biostudies-literature
| S-EPMC5035189 | biostudies-literature
| S-EPMC4845278 | biostudies-literature
| S-EPMC4698188 | biostudies-other
| S-EPMC4151528 | biostudies-other
| S-EPMC5497295 | biostudies-literature
| S-EPMC3992427 | biostudies-literature
| S-EPMC2492089 | biostudies-other
| S-EPMC8183884 | biostudies-literature
| S-EPMC6931632 | biostudies-literature