Unknown

Dataset Information

0

Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea.


ABSTRACT: This study elaborates the consequences of oxidative stress caused by copper oxide (CuO) and titanium dioxide (TiO2) nanoparticles (NPs) in Brassica juncea. Effect of these two NPs on plant physiology, reactive oxygen scavenging enzyme system (ascorbate peroxidase, catalase, superoxide dismutase), proline content and lipid peroxidation has been estimated in leaves as well as root tissues. Bioaccumulation of NPs has also been evaluated in the current study and the interrelated cascade of the enzymatic system with H2O2 production was identified. The uptake of NPs in plant leaves was confirmed by scanning electron microscopy, X-ray diffraction, and Fourier Transform Infrared Spectroscopy. Plant growth was found to be diminished with elevated levels of CuO NPs whereas TiO2 NPs had shown an opposite effect. The plant species accumulated lower concentration of NPs and displayed considerable tolerance against stress, probably due to well-organized and coordinated defense system at the root and shoot level by the intonation of antioxidative enzymes.

SUBMITTER: Rao S 

PROVIDER: S-EPMC5110483 | biostudies-literature | 2016 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea.

Rao Sunita S   Shekhawat Gyan Singh GS  

3 Biotech 20161115 2


This study elaborates the consequences of oxidative stress caused by copper oxide (CuO) and titanium dioxide (TiO<sub>2</sub>) nanoparticles (NPs) in Brassica juncea. Effect of these two NPs on plant physiology, reactive oxygen scavenging enzyme system (ascorbate peroxidase, catalase, superoxide dismutase), proline content and lipid peroxidation has been estimated in leaves as well as root tissues. Bioaccumulation of NPs has also been evaluated in the current study and the interrelated cascade o  ...[more]

Similar Datasets

| S-EPMC9104374 | biostudies-literature
| S-EPMC9340790 | biostudies-literature
| S-EPMC8232002 | biostudies-literature
| S-EPMC5702422 | biostudies-literature
2014-08-20 | GSE53242 | GEO
2014-08-20 | E-GEOD-53242 | biostudies-arrayexpress
| S-EPMC7412126 | biostudies-literature
| S-EPMC3170545 | biostudies-literature
2018-04-04 | GSE112675 | GEO
2009-03-01 | E-MEXP-1903 | biostudies-arrayexpress