Magnetic phase diagram of underdoped YBa2Cu3O y inferred from torque magnetization and thermal conductivity.
Ontology highlight
ABSTRACT: Strong evidence for charge-density correlation in the underdoped phase of the cuprate YBa2Cu3O y was obtained by NMR and resonant X-ray scattering. The fluctuations were found to be enhanced in strong magnetic fields. Recently, 3D charge-density-wave (CDW) formation with long-range order (LRO) was observed by X-ray diffraction in [Formula: see text] 15 T. To elucidate how the CDW transition impacts the pair condensate, we have used torque magnetization to 45 T and thermal conductivity [Formula: see text] to construct the magnetic phase diagram in untwinned crystals with hole density p = 0.11. We show that the 3D CDW transitions appear as sharp features in the susceptibility and [Formula: see text] at the fields [Formula: see text] and [Formula: see text], which define phase boundaries in agreement with spectroscopic techniques. From measurements of the melting field [Formula: see text] of the vortex solid, we obtain evidence for two vortex solid states below 8 K. At 0.5 K, the pair condensate appears to adjust to the 3D CDW by a sharp transition at 24 T between two vortex solids with very different shear moduli. At even higher H (41 T), the second vortex solid melts to a vortex liquid which survives to fields well above 41 T. de Haas-van Alphen oscillations appear at fields 24-28 T, below the lower bound for the upper critical field [Formula: see text].
SUBMITTER: Yu F
PROVIDER: S-EPMC5111645 | biostudies-literature | 2016 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA