Unknown

Dataset Information

0

Multimodal analysis of cortical chemoarchitecture and macroscale fMRI resting-state functional connectivity.


ABSTRACT: The cerebral cortex is well known to display a large variation in excitatory and inhibitory chemoarchitecture, but the effect of this variation on global scale functional neural communication and synchronization patterns remains less well understood. Here, we provide evidence of the chemoarchitecture of cortical regions to be associated with large-scale region-to-region resting-state functional connectivity. We assessed the excitatory versus inhibitory chemoarchitecture of cortical areas as an ExIn ratio between receptor density mappings of excitatory (AMPA, M1 ) and inhibitory (GABAA , M2 ) receptors, computed on the basis of data collated from pioneering studies of autoradiography mappings as present in literature of the human (2 datasets) and macaque (1 dataset) cortex. Cortical variation in ExIn ratio significantly correlated with total level of functional connectivity as derived from resting-state functional connectivity recordings of cortical areas across all three datasets (human I: P?=?0.0004; human II: P?=?0.0008; macaque: P?=?0.0007), suggesting cortical areas with an overall more excitatory character to show higher levels of intrinsic functional connectivity during resting-state. Our findings are indicative of the microscale chemoarchitecture of cortical regions to be related to resting-state fMRI connectivity patterns at the global system's level of connectome organization. Hum Brain Mapp 37:3103-3113, 2016. © 2016 Wiley Periodicals, Inc.

SUBMITTER: van den Heuvel MP 

PROVIDER: S-EPMC5111767 | biostudies-literature | 2016 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multimodal analysis of cortical chemoarchitecture and macroscale fMRI resting-state functional connectivity.

van den Heuvel Martijn P MP   Scholtens Lianne H LH   Turk Elise E   Mantini Dante D   Vanduffel Wim W   Feldman Barrett Lisa L  

Human brain mapping 20160521 9


The cerebral cortex is well known to display a large variation in excitatory and inhibitory chemoarchitecture, but the effect of this variation on global scale functional neural communication and synchronization patterns remains less well understood. Here, we provide evidence of the chemoarchitecture of cortical regions to be associated with large-scale region-to-region resting-state functional connectivity. We assessed the excitatory versus inhibitory chemoarchitecture of cortical areas as an E  ...[more]

Similar Datasets

| S-EPMC5313507 | biostudies-literature
| S-EPMC4531302 | biostudies-literature
| S-EPMC2735022 | biostudies-other
| S-EPMC4139498 | biostudies-literature
| S-EPMC3288461 | biostudies-literature
| S-EPMC8612467 | biostudies-literature
| S-EPMC9057309 | biostudies-literature
| S-EPMC8813046 | biostudies-literature
| S-EPMC8579116 | biostudies-literature
| S-EPMC4758830 | biostudies-other