Project description:Long noncoding RNA (lncRNA) HLA complex P5 (HCP5) is correlated with multiple diseases, especially cancers. However, it remains to be further studied whether HCP5 is involved in the malignant behaviors of gliomas. This study is aimed at investigating the role and regulation mechanisms of HCP5 in gliomas. HCP5 expression in glioma tumor tissues and its association with glioma patients' survival were analyzed based on RNA-sequencing data. The expression of HCP5 was also examined in glioma cells. Then, HCP5 was downregulated in U251 cells and/or primary glioblastoma cells to explore its effects on cell proliferation and migration. The influence of HCP5 downregulation on tumor growth was confirmed in xenograft mice. About the mechanism, we investigated whether HCP5 functioned via interacting with microRNA- (miR-) 205 and regulating vascular endothelial growth factor A (VEGF-A) expression in gliomas. Results showed that HCP5 upregulation was found in glioma tissues and cell lines. Patients with high HCP5 expression showed lower survival probability and shorter survival time. HCP5 downregulation inhibited cell proliferation and migration and mitigated tumor growth. miR-205 was downregulated in glioma cells. Knockdown of HCP5 led to miR-205 upregulation and VEGF-A downregulation. miR-205 overexpression exhibited the similar effects as HCP5 downregulation on cell viability and proliferation. And VEGF-A overexpression could reverse the effects of HCP5 downregulation on cell viability and proliferation, as well as tumor growth. In conclusion, HCP5 silencing suppressed glioma progression through the HCP5-miR-205-VEGF-A feedback loop.
Project description:Long non-coding RNA (lncRNA) dysregulation is involved in tumorigenesis and regulation of diverse cellular processes in gliomas. lncRNA SNHG12 is upregulated and promotes cell growth in human osteosarcoma cells. TAR-DNA binding protein 43 (TDP43) functions as an oncogene in various tumors by modulating RNA expression. Downregulation of TDP43 or SNHG12 significantly inhibited malignant biological behaviors of glioma cells. miR-195, downregulated in glioma tissues and cells, significantly impaired the malignant progression of glioma cells. TDP43 upregulated miR-195 in an SNHG12-dependent manner. We further revealed that SNHG12 and miR-195 were in an RNA-induced silencing complex (RISC). Inhibition of SNHG12 combined with restoration of miR-195 robustly reduced tumor growth in vivo. SOX5 was overexpressed in glioma tissues and cells. miR-195 targeted SOX5 3' UTR in a sequence-specific manner. Gelsolin was activated by SOX5. More importantly, SOX5 activated SNHG12 promoter and upregulated its expression, forming a feedback loop. Dysregulation of SNHG12, miR-195, and SOX5 predicted poor prognosis of glioma patients. The present study demonstrated that SNHG12-miR-195-SOX5 feedback loop exerted a crucial role in the regulation of glioma cells' malignant progression.
Project description:Rationale: PIWI-interacting RNAs (piRNAs), a class of newly discovered small RNA molecules that function by binding to the Argonaute protein family (i.e., the PIWIL protein subfamily), and long noncoding RNAs (lncRNA) are implicated in several cancers. However, the detailed roles of ncRNAs in glioma remain unclear. Methods: The expression of PIWIL3, piR-30188, OIP5-AS1, miR-367, CEBPA and TRAF4 were measured in glioma tissues and cells. The role of PIWIL3/OIP5-AS1/miR-367-3p/CEBPA feedback loop was evaluated in cell and animal models. The association of the above molecules was analyzed. Results: Over-expression of PIWIL3, piR-30188 and miR-367-3p or knockdown of OIP5-AS1 resulted in inhibition of glioma cells progression. Binding sites between piR-30188 and OIP5-AS1 as well as between OIP5-AS1 and miR-367-3p were confirmed by RNA immunoprecipitation and luciferase assays. OIP5-AS1 knockdown or miR-367-3p over-expression contributed to a decrease in CEBPA (CCAAT/enhancer binding protein alpha) protein. Furthermore, CEBPA was detected as a target of miR-367-3p and played an oncogenic role in glioma. Treatment with CEBPA and miR-367-3p resulted in the modulation of downstream TRAF4 (TNF receptor-associated factor 4). PIWIL3 was also a target of CEBPA, forming a positive feedback loop in the growth regulation of glioma cells. Significantly, knockdown of OIP5-AS1 combined with over-expression of PIWIL3 and miR-367-3p resulted in tumor regression and extended survival in vivo. Conclusion: These results identified a novel molecular pathway in glioma cells that may provide a potential innovative approach for tumor therapy.
Project description:Accumulating evidence has highlighted the potential role of non-coding RNAs (ncRNAs) and upstream open-reading frames (uORFs) in the biological behaviors of glioblastoma. Here, we elucidated the function and possible molecular mechanisms of the effect of some ncRNAs and NR2C2-uORF on the biological behaviors of gliomas. Quantitative real-time PCR was conducted to profile the cell expression of lnc-UCA1 and microRNA-627-5p (miR-627-5p) in glioma tissues and cells. Western blot assay was used to determine the expression levels of NR2C2, SPOCK1, and NR2C2-uORF in glioma tissues and cells. Stable knockdown of lnc-UCA1 or overexpression of miR-627-5p in glioma cell lines (U87 and U251) were established to explore the function of lnc-UCA1 and miR-627-5p in glioma cells. Further, Dual luciferase report assay was used to investigate the correlation between lnc-UCA1 and miR-627-5p. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate lnc-UCA1 and miR-627-5p function including cell proliferation, migration and invasion, and apoptosis, respectively. ChIP assays were used to ascertain the correlations between NR2C2 and SPOCK1 as well as NR2C2 between lnc-UCA1. This study confirmed that lnc-UCA1 was up-regulated in glioma tissues and cells. UCA1 knockdown inhibited the malignancies of glioma cells by reducing proliferation, migration, and invasion, but inducing apoptosis. We found that lnc-UCA1 acted as miR-627-5p sponge in a sequence-specific manner. Meanwhile, upregulated lnc-UCA1 inhibited miR-627-5p expression. In addition, miR-627-5p targeted 3'UTR of NR2C2 and down-regulated its expression. Moreover, UCA1 knockdown impaired NR2C2 expression by upregulating miR-627-5p. An uORF was identified in mRNA 5'UTR of NR2C2 and overexpression of whom negatively regulated NR2C2 expression. Remarkably, lnc-UCA1 knockdown combined with uORF overepression and NR2C2 knockdown led to severe tumor suppression in vivo. This study demonstrated that the NR2C2-uORF impaired the pivotal roles that UCA1-miR-627-5p-NR2C2 feedback loop had in regulating the malignancies of glioma cells by targeting NR2C2 directly. And this may provide a potential therapeutic strategy for treating glioma.
Project description:Accumulating evidence shows that long noncoding RNA (lncRNA) dysregulation plays a critical role in tumor angiogenesis. Glioma is characterized by abundant angiogenesis. Herein, we investigated the expression and function of LINC00346 in the regulation of glioma angiogenesis. The present study first demonstrated that ANKHD1 (ankyrin repeat and KH domain-containing protein 1) and LINC00346 were significantly increased in glioma-associated endothelial cells (GECs), whereas ZNF655 (zinc finger protein 655) was decreased in GECs. Meanwhile, ANKHD1 inhibition, LINC00346 inhibition, or ZNF655 overexpression impeded angiogenesis of GECs. Moreover, ANKHD1 targeted LINC00346 and enhanced the stability of LINC00346. In addition, LINC00346 bound to ZNF655 mRNA through their Alu elements so that LINC00346 facilitated the degradation of ZNF655 mRNA via a STAU1 (Staufen1)-mediated mRNA decay (SMD) mechanism. Futhermore, ZNF655 targeted the promoter region of ANKHD1 and formed an ANKHD1/LINC00346/ZNF655 feedback loop that regulated glioma angiogenesis. Finally, knockdown of ANKHD1 and LINC00346, combined with overexpression of ZNF655, resulted in a significant decrease in new vessels and hemoglobin content in vivo. The results identified an ANKHD1/LINC00346/ZNF655 feedback loop in the regulation of glioma angiogenesis that may provide new targets and strategies for targeted therapy against glioma.
Project description:Although runt-related transcription factor 1 (RUNX1) and its associating core binding factor-? (CBFB) play pivotal roles in leukemogenesis, and inhibition of RUNX1 has now been widely recognized as a novel strategy for anti-leukemic therapies, it has been elusive how leukemic cells could acquire the serious resistance against RUNX1-inhibition therapies and also whether CBFB could participate in this process. Here, we show evidence that p53 (TP53) and CBFB are sequentially up-regulated in response to RUNX1 depletion, and their mutual interaction causes the physiological resistance against chemotherapy for acute myeloid leukemia (AML) cells. Mechanistically, p53 induced by RUNX1 gene silencing directly binds to CBFB promoter and stimulates its transcription as well as its translation, which in turn acts as a platform for the stabilization of RUNX1, thereby creating a compensative RUNX1-p53-CBFB feedback loop. Indeed, AML cells derived from relapsed cases exhibited higher CBFB expression levels compared to those from primary AML cells at diagnosis, and these CBFB expressions were positively correlated to those of p53. Our present results underscore the importance of RUNX1-p53-CBFB regulatory loop in the development and/or maintenance of AML cells, which could be targeted at any sides of this triangle in strategizing anti-leukemia therapies.
Project description:Gliomas are the most malignant and common tumors of the human brain, and the prognosis of glioma patients is extremely poor. MicroRNAs (miRNAs or miRs) play critical roles in different types of cancer by performing post‑transcriptional regulation of gene expression. Although miR‑218 has been demonstrated to be decreased in gliomas, its role in gliomas remains largely unknown. miR‑218 expression was analyzed in gliomas and normal brain tissues (control subjects) using a dataset from The Cancer Genome Atlas. A series of in vitro and in vivo studies were performed to determine the biological roles of miR‑218 in glioma cells. Potential targets of miR‑218 were identified using a dual‑luciferase reporter system. Western blot and dual‑luciferase reporter system experiments were performed to evaluate the regulatory effect of miR‑218 on the tenascin C (TNC)/AKT/activator protein 1 (AP‑1)/transforming growth factor β1 (TGFβ1) pathway. It was demonstrated that miR‑218 was significantly downregulated in gliomas compared with control subjects, and played potent tumor suppressor roles in glioma cells by inhibiting cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice, as well as inducing cell cycle arrest and apoptosis. Mechanistically, miR‑218 inhibited malignant phenotypes of glioma cells by binding to the 3'‑untranslated region of its target TNC and subsequently suppressing its expression. As a result, miR‑218 could reduce AKT phosphorylation and subsequently inhibit transcriptional activity of AP‑1 by reducing JNK phosphorylation, downregulating the expression of TGFβ1, while TGFβ1 was able to, in turn, activate the TNC/AKT/AP‑1 signaling axis. Our data revealed a previously unknown tumor suppressor role of miR‑218 by blocking the TNC/AKT/AP‑1/TGFβ1‑positive feedback loop in glioma.
Project description:Glioma is the most aggressive and common malignant neoplasms in human brain tumors. Numerous studies have showed that glioma stem cells (GSCs)drive the malignant progression of gliomas. Recent studies have revealed that circRNAs can maintain stemness and promote malignant progression of glioma stem cells. We used bioinformatics analysis to identify circRNAs and potential RNA-binding proteins (RBPs) in glioma. qRT-PCR, western blotting, RNA FISH, RNA pull-down, RNA immunoprecipitation assay, ChIP, immunohistochemistry, and immunofluorescence methods were used to quantified the expression of circNCAPG, U2AF65, RREB1 and TGF-β1, and the underlying mechanisms between them. MTS, EDU, neurosphere formation, limiting dilution neurosphere formation and transwell assays examined the proliferation and invasive capability of GSCs, respectively. We identified a novel circRNA named circNCAPG was overexpressed and indicated the poor prognosis in glioma patients. Upregulating circNCAPG promoted the malignant progression of GSCs. RNA binding protein U2AF65 could stabilize circNCAPG by direct binding. Mechanically, circNCAPG interacted with and stabilized RREB1, as well as stimulated RREB1 nuclear translocation to activate TGF-β1 signaling pathway. Furthermore, RREB1 transcriptionally upregulated U2AF65 expression to improve the stability of circNCAPG in GSCs, which established a feedback loop involving U2AF65, circNCAPG and RREB1. Since circRNA is more stable than mRNA and can execute its function continuously, targeting circNCAPG in glioma may be a novel promising therapeutic.
Project description:BackgroundGlioma is the most common and lethal type of malignant brain tumor. Accumulating evidence has highlighted that RNA binding protein APOBEC1 complementation factor (A1CF) is involved in various cellular processes by modulating RNA expression, and acts as an oncogene in breast cancer. However, the function of A1CF in glioma remained unclear.MethodsQuantitative RT-PCR and western blot analysis were employed to detect the expression levels of A1CF, lncRNA family with sequence similarity 224 member A (FAM224A), miR-590-3p, zinc finger protein 143 (ZNF143) and ArfGAP with SH3 domain, ankyrin repeat and PH domain 3 (ASAP3) in glioma tissues and cell lines. The Cell Counting Kit-8 assay, migration and invasion assays, and flow cytometry analysis were conducted to evaluate the function of A1CF, FAM224A, miR-590-3p, ZNF143 and ASAP3 in the malignant biological behaviors of glioma cells. Moreover, luciferase reporter, RIP and ChIP assays were used to investigate the interactions among A1CF, FAM224A, miR-590-3p, ZNF143, ASAP3 and MYB. Finally, the xenograft tumor growth assay further ascertained the biological roles of A1CF, FAM224A and miR-590-3p in glioma cells.ResultsA1CF was upregulated and functioned as an oncogene via stabilizing and increasing FAM224A expression; moreover, high A1CF and FAM224A expression levels indicated a poorer prognosis for glioma patients. Conversely, miR-590-3p was downregulated and exerted a tumor-suppressive function in glioma cells. Inhibition of A1CF significantly restrained cell proliferation, migration and invasion, and promoted apoptosis by upregulating miR-590-3p in a FAM224A-dependent manner. FAM224A was a molecular sponge of miR-590-3p and they were in an RNA-induced silencing complex. ZNF143 was upregulated in glioma tissues and cell lines. MiR-590-3p could negatively modulate the expression of ZNF143 via binding to the ZNF143 3' UTR. Moreover, ZNF143 participated in miR-590-3p-induced tumor-suppressive activity on glioma cells. ASAP3 and MYB were transcriptionally activated by ZNF143, and importantly, ZNF143 could directly target the promoter of FAM224A and stimulate its expression, collectively forming a positive feedback loop.ConclusionsThe present study clarifies that the A1CF-FAM224A-miR-590-3p-ZNF143 positive feedback loop conducts critical regulatory effects on the malignant progression of glioma cells, which provides a novel molecular target for glioma therapy.
Project description:BackgroundLong non-coding RNAs has been reported in tumorigenesis and play important roles in regulating malignant behavior of cancers, including glioma.MethodsAccording to the TCGA database, we identified SNHG1, miRNA-154-5p and miR-376b-3p whose expression were significantly changed in the glioma samples. Furthermore, we investigated SNHG1, miRNA-154-5p and miR-376b-3p expression in clinical samples and glioma cell lines using qRT-PCR analysis and the correlation between them using RNA immunoprecipitation and dual-luciferase reporter. The underlying mechanisms of SNHG1 in glioma were also investigated using immunohistochemistry staining, Western blotting, chromatin immunoprecipitation, and RNA pulldown. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate malignant biological behaviors.ResultsWe have elucidated the potential molecular mechanism of long non-coding RNA SNHG1 regulating the malignant behavior of glioma cells by binding to microRNA-154-5p or miR-376b-3p. Moreover, our deep-going results showed that FOXP2 existed as a direct downstream target of both microRNA-154-5p and miR-376b-3p; FOXP2 increased promoter activities and enhanced the expression of the oncogenic gene KDM5B; and KDM5B also acts as a RNA-binding protein to maintain the stability of SNHG1.ConclusionCollectively, this study demonstrates that the SNHG1- microRNA-154-5p/miR-376b-3p- FOXP2- KDM5B feedback loop plays a pivotal role in regulating the malignant behavior of glioma cells.