Unknown

Dataset Information

0

The Machado-Joseph Disease Deubiquitinase Ataxin-3 Regulates the Stability and Apoptotic Function of p53.


ABSTRACT: As a deubiquitinating enzyme (DUB), the physiological substrates of ataxin-3 (ATX-3) remain elusive, which limits our understanding of its normal cellular function and that of pathogenic mechanism of spinocerebellar ataxia type 3 (SCA3). Here, we identify p53 to be a novel substrate of ATX-3. ATX-3 binds to native and polyubiquitinated p53 and deubiquitinates and stabilizes p53 by repressing its degradation through the ubiquitin (Ub)-proteasome pathway. ATX-3 deletion destabilizes p53, resulting in deficiency of p53 activity and functions, whereas ectopic expression of ATX-3 induces selective transcription/expression of p53 target genes and promotes p53-dependent apoptosis in both mammalian cells and the central nervous system of zebrafish. Furthermore, the polyglutamine (polyQ)-expanded ATX-3 retains enhanced interaction and deubiquitination catalytic activity to p53 and causes more severe p53-dependent neurodegeneration in zebrafish brains and in the substantia nigra pars compacta (SNpc) or striatum of a transgenic SCA3 mouse model. Our findings identify a novel molecular link between ATX-3 and p53-mediated cell death and provide an explanation for the direct involvement of p53 in SCA3 disease pathogenesis.

SUBMITTER: Liu H 

PROVIDER: S-EPMC5112960 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3005906 | biostudies-literature
| S-EPMC6974715 | biostudies-literature
| S-EPMC3551966 | biostudies-literature
| S-EPMC3306771 | biostudies-literature
| S-EPMC9259533 | biostudies-literature
| S-EPMC10235640 | biostudies-literature
| S-EPMC8617493 | biostudies-literature
| S-EPMC2553199 | biostudies-literature
| S-EPMC3568768 | biostudies-literature
| S-EPMC3808129 | biostudies-literature