Understanding the Light Soaking Effects in Inverted Organic Solar Cells Functionalized with Conjugated Macroelectrolyte Electron-Collecting Interlayers.
Ontology highlight
ABSTRACT: Three kinds of charged star-shaped conjugated macroelectrolytes, named as PhNBr, TPANBr, and TrNBr, are synthesized as electron-collecting interlayers for inverted polymer solar cells (i-PSCs). Based on these well-defined structured interlayer materials, the light soaking (LS) effect observed in i-PSCs was studied systematically and accurately. The general character of the LS effect is further verified by studying additional i-PSC devices functionalized with other common interlayers. The key-role of UV photons was confirmed by electrochemical impedance spectroscopy and electron-only devices. In addition, the ultraviolet photoelectron spectroscopy measurements indicate that the work function of the indium tin oxide (ITO)/interlayer cathode is significantly reduced after UV treatment. In these i-PSC devices the LS effect originates from the adsorbed oxygen on the ITO substrates when oxygen plasma is used; however, even a small amount of oxygen from the ambient is also enough for triggering the LS effect, albeit with a weaker intensity. Our results suggest that the effect of adsorbed oxygen on ITO needs to be considered with attention while preparing i-PSCs. This is an important finding that can aid the large-scale manufacturing of organic solar cells via printing technologies, which do not always ensure the full protection of the device electrode substrates from oxygen.
SUBMITTER: Xu W
PROVIDER: S-EPMC5115465 | biostudies-literature | 2016 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA