Project description:A shared genetic susceptibility between cutaneous malignant melanoma (CMM) and Parkinson's disease (PD) has been suggested. We investigated this by assessing the contribution of rare variants in genes involved in CMM to PD risk. We studied rare variation across 29 CMM risk genes using high-quality genotype data in 6875 PD cases and 6065 controls and sought to replicate findings using whole-exome sequencing data from a second independent cohort totaling 1255 PD cases and 473 controls. No statistically significant enrichment of rare variants across all genes, per gene, or for any individual variant was detected in either cohort. There were nonsignificant trends toward different carrier frequencies between PD cases and controls, under different inheritance models, in the following CMM risk genes: BAP1, DCC, ERBB4, KIT, MAPK2, MITF, PTEN, and TP53. The very rare TYR p.V275F variant, which is a pathogenic allele for recessive albinism, was more common in PD cases than controls in 3 independent cohorts. Tyrosinase, encoded by TYR, is the rate-limiting enzyme for the production of neuromelanin, and has a role in the production of dopamine. These results suggest a possible role for another gene in the dopamine-biosynthetic pathway in susceptibility to neurodegenerative Parkinsonism, but further studies in larger PD cohorts are needed to accurately determine the role of these genes/variants in disease pathogenesis.
Project description:Approximately 20 % of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset PD to identify 15 potentially causal variants. Segregation analysis and frequency assessment in 862 PD cases and 1,014 ethnically matched controls highlighted variants in EEF1D and LRRK1 as the best candidates. Mutation screening of the coding regions of these genes in 862 cases and 1,014 controls revealed several novel non-synonymous variants in both genes in cases and controls. An in silico multi-model bioinformatics analysis was used to prioritize identified variants in LRRK1 for functional follow-up. However, protein expression, subcellular localization, and cell viability were not affected by the identified variants. Although it has yet to be proven conclusively that variants in LRRK1 are indeed causative of PD, our data strengthen a possible role for LRRK1 in addition to LRRK2 in the genetic underpinnings of PD but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance.
Project description:Approximately 20% of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset familial PD followed by frequency assessment in 975 PD cases and 1014 ethnically-matched controls and linkage analysis to identify potentially causal variants. Based on the predicted penetrance and the frequencies, a variant in PLXNA4 proved to be the best candidate and PLXNA4 was screened for additional variants in 862 PD cases and 940 controls, revealing an excess of rare non-synonymous coding variants in PLXNA4 in individuals with PD. Although we cannot conclude that the variant in PLXNA4 is indeed the causative variant, these findings are interesting in the light of a surfacing role of axonal guidance mechanisms in neurodegenerative disorders but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance.
Project description:BackgroundTo date, several studies have suggested that genes involved in monogenic forms of Parkinson's disease (PD) contribute to unrelated sporadic cases, but there is limited evidence in the Chinese population.MethodsWe performed a systematic analysis of 12 autosomal-dominant PD (AD-PD) genes (SNCA, LRRK2, GIGYF2, VPS35, EIF4G1, DNAJC13, CHCHD2, HTRA2, NR4A2, RIC3, TMEM230, and UCHL1) using panel sequencing and database filtration in a case-control study of a cohort of 391 Chinese sporadic PD patients and unrelated controls. We evaluated the association between candidate variants and sporadic PD using gene-based analysis.ResultsOverall, 18 rare variants were discovered in 18.8% (36/191) of the index patients. In addition to previously reported pathogenic mutations (LRRK2 p.Arg1441His and p.Ala419Val), another four unknown variants were found in LRRK2, which also contribute to PD risk (p = 0.002; odds ratio (OR) = 7.83, 95% confidence intervals (CI) = 1.76-34.93). The cumulative frequency of undetermined rare variants was significantly higher in PD patients (14.1%) than in controls (3.5%) (p = 0.0002; OR=4.54, 95% CI = 1.93-10.69).ConclusionOur results confirm the strong impact of LRRK2 on the risk of sporadic PD, and also provide considerable evidence of the existence of additional undetermined rare variants in AD-PD genes that contribute to the genetic etiology of sporadic PD in a Chinese cohort.
Project description:Many individuals with Parkinson's disease (PD) develop cognitive deficits, and a phenotypic and molecular overlap between neurodegenerative diseases exists. We investigated the contribution of rare variants in seven genes of known relevance to dementias (?-amyloid precursor protein (APP), PSEN1/2, MAPT (microtubule-associated protein tau), fused in sarcoma (FUS), granulin (GRN) and TAR DNA-binding protein 43 (TDP-43)) to PD and PD plus dementia (PD+D) in a discovery sample of 376 individuals with PD and followed by the genotyping of 25 out of the 27 identified variants with a minor allele frequency <5% in 975 individuals with PD, 93 cases with Lewy body disease on neuropathological examination, 613 individuals with Alzheimer's disease (AD), 182 cases with frontotemporal dementia and 1014 general population controls. Variants identified in APP were functionally followed up by A? mass spectrometry in transiently transfected HEK293 cells. PD+D cases harbored more rare variants across all the seven genes than PD individuals without dementia, and rare variants in APP were more common in PD cases overall than in either the AD cases or controls. When additional controls from publically available databases were added, one rare variant in APP (c.1795G>A(p.(E599K))) was significantly associated with the PD phenotype but was not found in either the PD cases or controls of an independent replication sample. One of the identified rare variants (c.2125G>A (p.(G709S))) shifted the A? spectrum from A?40 to A?39 and A?37. Although the precise mechanism remains to be elucidated, our data suggest a possible role for APP in modifying the PD phenotype as well as a general contribution of genetic factors to the development of dementia in individuals with PD.
Project description:GCH1 encodes the enzyme guanosine triphospahte (GTP) cyclohydrolase 1, essential for dopamine synthesis in nigrostriatal cells, and rare mutations in GCH1 may lead to Dopa-responsive dystonia (DRD). While GCH1 is implicated in genomewide association studies in Parkinson's disease (PD), only a few studies examined the role of rare GCH1 variants in PD, with conflicting results. In the present study, GCH1 and its 5' and 3' untranslated regions were sequenced in 1113 patients with PD and 1111 controls. To examine the association of rare GCH1 variants with PD, burden analysis was performed. Three rare GCH1 variants, which were previously reported to be pathogenic in DRD, were found in five patients with PD and not in controls (sequence Kernel association test, p = 0.024). A common haplotype, tagged by rs841, was associated with a reduced risk for PD (OR = 0.71, 95% CI = 0.61-0.83, p = 1.24 × 10-4), and with increased GCH1 expression in brain regions relevant for PD (www.gtexportal.org). Our results support a role for rare, DRD-related variants, and common GCH1 variants in the pathogenesis of PD.
Project description:Although many rare variants have been reportedly associated with Parkinson's disease (PD), many have not been replicated or have failed to replicate. Here, we conduct a large-scale replication of rare PD variants. We assessed a total of 27,590 PD cases, 6701 PD proxies, and 3,106,080 controls from three data sets: 23andMe, Inc., UK Biobank, and AMP-PD. Based on well-known PD genes, 834 variants of interest were selected from the ClinVar annotated 23andMe dataset. We performed a meta-analysis using summary statistics of all three studies. The meta-analysis resulted in five significant variants after Bonferroni correction, including variants in GBA1 and LRRK2. Another eight variants are strong candidate variants for their association with PD. Here, we provide the largest rare variant meta-analysis to date, providing information on confirmed and newly identified variants for their association with PD using several large databases. Additionally we also show the complexities of studying rare variants in large-scale cohorts.
Project description:BackgroundEarly-onset Parkinson's disease (EOPD) refers to that of patients who have been diagnosed or had onset of motor symptoms before age 50, accounting for 4% of Parkinson's disease patients. The PRKN and PINK1 genes, both involved in a metabolic pathway, are associated with EOPD.MethodsTo identify variants associated with EOPD, coding region of PARKIN and PINK1 genes in 112 patients and 112 healthy individuals were sequenced. Multiplex ligation-dependent probe amplification kit was used to determine EOPD patients that carried mutations in PRKN and PINK1 genes.Results and conclusionThree rare and three novel mutations in total of 14 variants of PARKIN and PINK1 were detected in the EOPD cohorts. Mutations of PRKN and PINK1 genes were found in five (4.4%) patients, which were four patients with compound heterozygous variants in the PRKN and one case with a homozygous mutation of the PINK1 gene. The novel mutations might reduce the stability of the PRKN and PINK1 protein molecules. The frequency of homozygous mutant genotype p.A340T of the PINK1 in the EOPD cohort was higher than in control (p = 0.0001, OR = 5.704), suggesting this variant might be a risk factor for EOPD. To the best of our knowledge, this is the first study of PRKN and PINK1 genes conducted on Vietnamese EOPD patients. These results might contribute to the genetic screening of EOPD in Vietnam.
Project description:Introduction: Genome-wide association studies (GWAS) have identified multiple loci associated with Parkinson's disease (PD) risk. The presence of rare variants within these loci that may account for the increased susceptibility requires further investigation. Methods: Using exome sequencing, we performed a comprehensive rare variant screen of genes located within 56 novel PD loci. We first analyzed exomes from 109 subjects in the discovery cohort (85 diagnosed with PD and 24 healthy controls) and filtered for rare coding variants with minor allele frequency <0.01 and combined annotation-dependent depletion > 15. Further investigation of exome data from a replication cohort of 2,859 European patients with PD (International Parkinson's Disease Genomics Consortium) and 24,146 non-Finnish European controls from gnomAD were used for association testing of specific rare variants found in the discovery cohort. Results: Our genetic screening identified 54 potential disease-relevant variants in 71 genes in 109 subjects. Six out of 54 variants were found in two or more patients and were not observed in healthy controls: DNAH1 p.A3639T, STAB1 p.S1089G, ANK2 p.V3634D, ANK2 p.R3906W, SH3GL2 p.G276V, and NOD2 p.G908R. Replication in the International Parkinson's Disease Genomics Consortium (IPDGC) confirmed the association with PD risk for three out of the six identified variants (STAB1 p.S1089G, SH3GL2 p.G276V, and NOD2 p.G908R) (p < 10-3). Conclusion: Our study suggests that some of the associations identified in PD risk loci can be ascribed to rare variants with likely functional effects that modify PD risk.