Unknown

Dataset Information

0

Prediction of Poor Outcome After Transcatheter Aortic Valve Replacement.


ABSTRACT: A series of models have been developed to identify patients at high risk for poor outcomes after transcatheter aortic valve replacement (TAVR) to help guide treatment choices, offer patients realistic expectations of long-term outcomes, and support decision making.This study examined the performance of the previously developed TAVR Poor Outcome risk models in an external dataset and explored the incremental contribution of geriatric domains to model performance.Poor outcome after TAVR was defined as death, poor quality of life (QOL), or decline in QOL, as assessed using the Kansas City Cardiomyopathy Questionnaire. We tested 4 TAVR Poor Outcome risk models: 6-month and 1-year full and clinical (reduced) models. We examined each model's discrimination and calibration in the CoreValve trial dataset, and then tested the incremental contribution of frailty and disability markers to the model's discrimination using the incremental discrimination index.Among 2,830 patients who underwent TAVR in the CoreValve US Pivotal Extreme and High Risk trials and associated continued access registries, 31.2% experienced a poor outcome at 6 months following TAVR (death, 17.6%; very poor QOL, 11.6%; QOL decline, 2.0%) and 50.8% experienced a poor outcome at 1 year (death, 30.2%; poor QOL, 19.6%; QOL, decline 1.0%). The models demonstrated similar discrimination as in the Placement of Aortic Transcatheter Valves Trial cohorts (c-indexes, 0.637 to 0.665) and excellent calibration. Adding frailty as a syndrome increased the c-indexes by 0.000 to 0.004 (incremental discrimination index, p < 0.01 for all except the 1-year clinical model), with the most important individual components being disability and unintentional weight loss.Although discrimination of the TAVR Poor Outcome risk models was generally moderate, calibration was excellent among patients with different risk profiles and treated with a different TAVR device. These findings demonstrated the value of these models for individualizing outcome predictions in high-risk patients undergoing TAVR.

SUBMITTER: Arnold SV 

PROVIDER: S-EPMC5119650 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prediction of Poor Outcome After Transcatheter Aortic Valve Replacement.

Arnold Suzanne V SV   Afilalo Jonathan J   Spertus John A JA   Tang Yuanyuan Y   Baron Suzanne J SJ   Jones Philip G PG   Reardon Michael J MJ   Yakubov Steven J SJ   Adams David H DH   Cohen David J DJ  

Journal of the American College of Cardiology 20161001 17


<h4>Background</h4>A series of models have been developed to identify patients at high risk for poor outcomes after transcatheter aortic valve replacement (TAVR) to help guide treatment choices, offer patients realistic expectations of long-term outcomes, and support decision making.<h4>Objectives</h4>This study examined the performance of the previously developed TAVR Poor Outcome risk models in an external dataset and explored the incremental contribution of geriatric domains to model performa  ...[more]

Similar Datasets

| S-EPMC4198056 | biostudies-literature
| S-EPMC6090012 | biostudies-other
| S-EPMC10894414 | biostudies-literature
| S-EPMC8642721 | biostudies-literature
| S-EPMC8183801 | biostudies-literature
| S-EPMC7237626 | biostudies-literature
| S-EPMC6790961 | biostudies-literature
| S-EPMC6064853 | biostudies-literature
| S-EPMC4862065 | biostudies-other