Unknown

Dataset Information

0

Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes.


ABSTRACT: The hexosamine biosynthetic pathway (HBP) culminates in the attachment of O-linked ?-N-acetylglucosamine (O-GlcNAc) onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked ?-N-acetylglucosaminyl transferase (OGT) and ?-N-acetylglucosaminidase (OGA) catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT), transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian) were recruited from Stellenbosch and Paarl (Western Cape, South Africa) and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01), while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively). Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively). We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01). Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

SUBMITTER: Coomer M 

PROVIDER: S-EPMC5121314 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes.

Coomer Megan M   Essop M Faadiel MF  

Molecular genetics and metabolism reports 20140417


The hexosamine biosynthetic pathway (HBP) culminates in the attachment of <i>O</i>-linked β-<i>N</i>-acetylglucosamine (<i>O</i>-GlcNAc) onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. <i>O</i>-linked β-N-acetylglucosaminyl transferase (OGT) and β-N-acetylglucosaminidase (OGA) catalyze the addition and removal of <i>O</i>-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotran  ...[more]

Similar Datasets

| S-EPMC3035713 | biostudies-literature
| S-EPMC5533945 | biostudies-literature
| S-EPMC1904346 | biostudies-literature
| S-EPMC4891703 | biostudies-literature
| S-EPMC4874037 | biostudies-literature
| S-EPMC6411693 | biostudies-literature
| S-EPMC6168390 | biostudies-literature