YPTB3816 of Yersinia pseudotuberculosis strain IP32953 is a virulence-related metallo-oligopeptidase.
Ontology highlight
ABSTRACT: Although bacterial peptidases are known to be produced by various microorganisms, including pathogenic bacteria, their role in bacterial physiology is not fully understood. In particular, oligopeptidases are thought to be mainly involved in degradation of short peptides e.g. leader peptides released during classical protein secretion pathways. The aim of this study was to investigate effects of inactivation of an oligopeptidase encoding gene opdA gene of Yersinia pseudotuberculosis on bacterial properties in vivo and in vitro, and to test dependence of the enzymatic activity of the respective purified enzyme on the presence of different divalent cations.In this study we found that oligopeptidase OpdA of Yersinia pseudotuberculosis is required for bacterial virulence, whilst knocking out the respective gene did not have any effect on bacterial viability or growth rate in vitro. In addition, we studied enzymatic properties of this enzyme after expression and purification from E. coli. Using an enzyme depleted of contaminant divalent cations and different types of fluorescently labelled substrates, we found strong dependence of its activity on the presence of particular cations. Unexpectedly, Zn2+ showed stimulatory activity only at low concentrations, but inhibited the enzyme at higher concentrations. In contrast, Co2+, Ca2+ and Mn2+ stimulated activity at all concentrations tested, whilst Mg2+ revealed no effect on the enzyme activity at all concentrations used.The results of this study provide valuable contribution to the investigation of bacterial peptidases in general, and that of metallo-oligopeptidases in particular. This is the first study demonstrating that opdA in Yersinia pseudotuberculsosis is required for pathogenicity. The data reported are important for better understanding of the role of OpdA-like enzymes in pathogenesis in bacterial infections. Characterisation of this protein may serve as a basis for the development of novel antibacterials based on specific inhibition of this peptidase activity.
SUBMITTER: Atas A
PROVIDER: S-EPMC5124237 | biostudies-literature | 2016 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA