Unknown

Dataset Information

0

Comparative transcriptome analysis between an evolved abscisic acid-overproducing mutant Botrytis cinerea TBC-A and its ancestral strain Botrytis cinerea TBC-6.


ABSTRACT: Abscisic acid (ABA) is a classical phytohormone which plays an important role in plant stress resistance. Moreover, ABA is also found to regulate the activation of innate immune cells and glucose homeostasis in mammals. Therefore, this 'stress hormone' is of great importance to theoretical research and agricultural and medical applications. Botrytis cinerea is a well-known phytopathogenic ascomycete that synthesizes ABA via a pathway substantially different from higher plants. Identification of the functional genes involved in ABA biosynthesis in B. cinerea would be of special interest. We developed an ABA-overproducing mutant strain, B. cinerea TBC-A, previously and obtained a 41.5-Mb genome sequence of B. cinerea TBC-A. In this study, the transcriptomes of B. cinerea TBC-A and its ancestral strain TBC-6 were sequenced under identical fermentation conditions. A stringent comparative transcriptome analysis was performed to identify differentially expressed genes participating in the metabolic pathways related to ABA biosynthesis in B. cinerea. This study provides the first global view of the transcriptional changes underlying the very different ABA productivity of the B. cinerea strains and will expand our knowledge of the molecular basis for ABA biosynthesis in B. cinerea.

SUBMITTER: Ding Z 

PROVIDER: S-EPMC5124961 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comparative transcriptome analysis between an evolved abscisic acid-overproducing mutant Botrytis cinerea TBC-A and its ancestral strain Botrytis cinerea TBC-6.

Ding Zhongtao Z   Zhang Zhi Z   Zhong Juan J   Luo Di D   Zhou Jinyan J   Yang Jie J   Xiao Liang L   Shu Dan D   Tan Hong H  

Scientific reports 20161128


Abscisic acid (ABA) is a classical phytohormone which plays an important role in plant stress resistance. Moreover, ABA is also found to regulate the activation of innate immune cells and glucose homeostasis in mammals. Therefore, this 'stress hormone' is of great importance to theoretical research and agricultural and medical applications. Botrytis cinerea is a well-known phytopathogenic ascomycete that synthesizes ABA via a pathway substantially different from higher plants. Identification of  ...[more]

Similar Datasets

| S-EPMC1489360 | biostudies-literature
| S-EPMC444755 | biostudies-literature
| S-EPMC6102986 | biostudies-literature
| S-EPMC4227169 | biostudies-literature
| S-EPMC4633151 | biostudies-literature
| S-EPMC3653111 | biostudies-literature
| S-EPMC6218599 | biostudies-literature
| S-EPMC3983782 | biostudies-literature
| S-EPMC7695001 | biostudies-literature
| S-EPMC4669548 | biostudies-literature