Genotypes of CYP2C8 and FGD4 and their association with peripheral neuropathy or early dose reduction in paclitaxel-treated breast cancer patients.
Ontology highlight
ABSTRACT: The purpose of this study was to evaluate single-nucleotide polymorphisms (SNPs) in genes encoding key metabolising enzymes or involved in pharmacodynamics for possible associations with paclitaxel-induced peripheral neuropathy.The study population consists of 188 women from the multicenter, randomised, phase II ATX trial (BOOG2006-06; EudraCT number 2006-006058-83) that received paclitaxel and bevacizumab without or with capecitabine as first-line palliative therapy of HER2-negative metastatic breast cancer. Genotyping of CYP2C8*3 (c.416G>A), CYP3A4*22 (c.522-191C>T), TUBB2A (c.-101T>C), FGD4 (c.2044-236G>A) and EPHA5 (c.2895G>A) was performed by real-time PCR. Toxicity endpoints were cumulative dose (1) until first onset of grade ?1 peripheral neuropathy and (2) until first paclitaxel dose reduction from related toxicity (NCI-CTCAE version 3.0). SNPs were evaluated using the Kaplan-Meier method, the Gehan-Breslow-Wilcoxon test and the multivariate Cox regression analysis.The rate of grade ?1 peripheral neuropathy was 67% (n=126). The rate of dose reduction was 46% (n=87). Age ?65 years was a risk factor for peripheral neuropathy (HR=1.87, P<0.008), but not for dose reduction. When adjusted for age, body surface area and total cumulative paclitaxel dose, CYP2C8*3 carriers had an increased risk of peripheral neuropathy (HR=1.59, P=0.045). FGD4 c.2044-236 A-allele carriers had an increased risk of paclitaxel dose reduction (HR per A-allele=1.38, P=0.036) when adjusted for total cumulative paclitaxel dose.These findings may point towards clinically useful indicators of early toxicity, but warrant further investigation.
SUBMITTER: Lam SW
PROVIDER: S-EPMC5129817 | biostudies-literature | 2016 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA