Transcriptome analysis confers a complex disease resistance network in wild rice Oryza meyeriana against Xanthomonas oryzae pv. oryzae.
Ontology highlight
ABSTRACT: Rice bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the devastating diseases of rice. It is well established that the wild rice Oryza meyeriana is immune to BB. In this study, the transcriptomic analysis was carried out by RNA sequencing of O. meyeriana leaves, inoculated with Xoo to understand the transcriptional responses and interaction between the host and pathogen. Totally, 57,313 unitranscripts were de novo assembled from 58.7?Gb clean reads and 14,143 unitranscripts were identified after Xoo inoculation. The significant metabolic pathways related to the disease resistance enriched by KEGG, were revealed to plant-pathogen interaction, phytohormone signaling, ubiquitin mediated proteolysis, and phenylpropanoid biosynthesis. Further, many disease resistance genes were also identified to be differentially expressed in response to Xoo infection. Conclusively, the present study indicated that the induced innate immunity comprise the basal defence frontier of O. meyeriana against Xoo infection. And then, the resistance genes are activated. Simultaneously, the other signaling transduction pathways like phytohormones and ubiquitin mediated proteolysis may contribute to the disease defence through modulation of the disease-related genes or pathways. This could be an useful information for further investigating the molecular mechanism associated with disease resistance in O. meyeriana.
SUBMITTER: Cheng XJ
PROVIDER: S-EPMC5131272 | biostudies-literature | 2016 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA