Identification, Heterologous Expression, and Functional Characterization of Bacillus subtilis YutF, a HAD Superfamily 5'-Nucleotidase with Broad Substrate Specificity.
Ontology highlight
ABSTRACT: 5'-nucleotidases (EC 3.1.3.5) catalyze the hydrolytic dephosphorylation of 5'-ribonucleotides and 5'-deoxyribonucleotides as well as complex nucleotides, such as uridine 5'-diphosphoglucose (UDP-glucose), nicotinamide adenine dinucleotide and flavin adenine dinucleotide, to their corresponding nucleosides plus phosphate. These enzymes have been found in diverse species in intracellular and membrane-bound, surface-localized forms. Soluble forms of 5'-nucleotidases belong to the ubiquitous haloacid dehalogenase superfamily (HADSF) and have been shown to be involved in the regulation of nucleotide, nucleoside and nicotinamide adenine dinucleotide (NAD+) pools. Despite the important role of 5'-nucleotidases in cellular metabolism, only a few of these enzymes have been characterized in the Gram-positive bacterium Bacillus subtilis, the workhorse industrial microorganism included in the Food and Drug Administration's GRAS (generally regarded as safe) list. In the present study, we report the identification of a novel 5'-nucleotidase gene from B. subtilis, yutF, which comprises 771 bp encoding a 256-amino-acid protein belonging to the IIA subfamily of the HADSF. The gene product is responsible for the major p-nitrophenyl phosphatase activity in B. subtilis. The yutF gene was overexpressed in Escherichia coli, and its product fused to a polyhistidine tag was purified and biochemically characterized as a soluble 5'-nucleotidase with broad substrate specificity. The recombinant YutF protein was found to hydrolyze various purine and pyrimidine 5'-nucleotides, showing preference for 5'-nucleoside monophosphates and, specifically, 5'-XMP. Recombinant YutF also exhibited phosphohydrolase activity toward nucleotide precursors, ribose-5-phosphate and 5-phosphoribosyl-1-pyrophosphate. Determination of the kinetic parameters of the enzyme revealed a low substrate specificity (Km values in the mM concentration range) and modest catalytic efficiencies with respect to substrates. An initial study of the regulation of yutF expression showed that the yutF gene is a component of the yutDEF transcription unit and that YutF overproduction positively influences yutDEF expression.
SUBMITTER: Zakataeva NP
PROVIDER: S-EPMC5132288 | biostudies-literature | 2016
REPOSITORIES: biostudies-literature
ACCESS DATA