Unknown

Dataset Information

0

Physicochemical properties that control protein aggregation also determine whether a protein is retained or released from necrotic cells.


ABSTRACT: Amyloidogenic protein aggregation impairs cell function and is a hallmark of many chronic degenerative disorders. Protein aggregation is also a major event during acute injury; however, unlike amyloidogenesis, the process of injury-induced protein aggregation remains largely undefined. To provide this insight, we profiled the insoluble proteome of several cell types after acute injury. These experiments show that the disulfide-driven process of nucleocytoplasmic coagulation (NCC) is the main form of injury-induced protein aggregation. NCC is mechanistically distinct from amyloidogenesis, but still broadly impairs cell function by promoting the aggregation of hundreds of abundant and essential intracellular proteins. A small proportion of the intracellular proteome resists NCC and is instead released from necrotic cells. Notably, the physicochemical properties of NCC-resistant proteins are contrary to those of NCC-sensitive proteins. These observations challenge the dogma that liberation of constituents during necrosis is anarchic. Rather, inherent physicochemical features including cysteine content, hydrophobicity and intrinsic disorder determine whether a protein is released from necrotic cells. Furthermore, as half of the identified NCC-resistant proteins are known autoantigens, we propose that physicochemical properties that control NCC also affect immune tolerance and other host responses important for the restoration of homeostasis after necrotic injury.

SUBMITTER: Samson AL 

PROVIDER: S-EPMC5133435 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Physicochemical properties that control protein aggregation also determine whether a protein is retained or released from necrotic cells.

Samson Andre L AL   Ho Bosco B   Au Amanda E AE   Schoenwaelder Simone M SM   Smyth Mark J MJ   Bottomley Stephen P SP   Kleifeld Oded O   Medcalf Robert L RL  

Open biology 20161101 11


Amyloidogenic protein aggregation impairs cell function and is a hallmark of many chronic degenerative disorders. Protein aggregation is also a major event during acute injury; however, unlike amyloidogenesis, the process of injury-induced protein aggregation remains largely undefined. To provide this insight, we profiled the insoluble proteome of several cell types after acute injury. These experiments show that the disulfide-driven process of nucleocytoplasmic coagulation (NCC) is the main for  ...[more]

Similar Datasets

| S-EPMC3809774 | biostudies-literature
| S-EPMC6520145 | biostudies-literature
| S-EPMC7136551 | biostudies-literature
| S-EPMC7184577 | biostudies-literature
| S-EPMC5648870 | biostudies-literature
2020-09-30 | E-MTAB-9064 | biostudies-arrayexpress
| S-EPMC10533490 | biostudies-literature
| S-EPMC6996891 | biostudies-literature
| S-EPMC10420264 | biostudies-literature
| S-EPMC4902120 | biostudies-literature