Unknown

Dataset Information

0

A chemical biology route to site-specific authentic protein modifications.


ABSTRACT: Many essential biological processes are controlled by posttranslational protein modifications. The inability to synthetically attain the diversity enabled by these modifications limits functional studies of many proteins. We designed a three-step approach for installing authentic posttranslational modifications in recombinant proteins. We first use the established O-phosphoserine (Sep) orthogonal translation system to create a Sep-containing recombinant protein. The Sep residue is then dephosphorylated to dehydroalanine (Dha). Last, conjugate addition of alkyl iodides to Dha, promoted by zinc and copper, enables chemoselective carbon-carbon bond formation. To validate our approach, we produced histone H3, ubiquitin, and green fluorescent protein variants with site-specific modifications, including different methylations of H3K79. The methylated histones stimulate transcription through histone acetylation. This approach offers a powerful tool to engineer diverse designer proteins.

SUBMITTER: Yang A 

PROVIDER: S-EPMC5135561 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

A chemical biology route to site-specific authentic protein modifications.

Yang Aerin A   Ha Sura S   Ahn Jihye J   Kim Rira R   Kim Sungyoon S   Lee Younghoon Y   Kim Jaehoon J   Söll Dieter D   Lee Hee-Yoon HY   Park Hee-Sung HS  

Science (New York, N.Y.) 20160929 6312


Many essential biological processes are controlled by posttranslational protein modifications. The inability to synthetically attain the diversity enabled by these modifications limits functional studies of many proteins. We designed a three-step approach for installing authentic posttranslational modifications in recombinant proteins. We first use the established O-phosphoserine (Sep) orthogonal translation system to create a Sep-containing recombinant protein. The Sep residue is then dephospho  ...[more]

Similar Datasets

| S-EPMC5405801 | biostudies-literature
| S-EPMC3127931 | biostudies-literature
| S-EPMC7487139 | biostudies-literature
| S-EPMC8568951 | biostudies-literature
| S-EPMC7145982 | biostudies-literature
| S-EPMC6465133 | biostudies-literature
| S-EPMC1180784 | biostudies-literature
| S-EPMC7266800 | biostudies-literature
| S-EPMC5489435 | biostudies-literature
| S-EPMC4104777 | biostudies-literature