Unknown

Dataset Information

0

DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism.


ABSTRACT: The topological state of DNA is important for replication, recombination and transcription, and is regulated in vivo by DNA topoisomerases. Gyrase introduces negative supercoils into DNA at the expense of ATP hydrolysis. It is the accepted view that gyrase achieves supercoiling by a strand passage mechanism, in which double-stranded DNA is cleaved, and a second double-stranded segment is passed through the gap, converting a positive DNA node into a negative node. We show here that gyrase with only one catalytic tyrosine that cleaves a single strand of its DNA substrate can catalyze DNA supercoiling without strand passage. We propose an alternative mechanism for DNA supercoiling via nicking and closing of DNA that involves trapping, segregation and relaxation of two positive supercoils. In contrast to DNA supercoiling, ATP-dependent relaxation and decatenation of DNA by gyrase lacking the C-terminal domains require both tyrosines and strand passage. Our results point towards mechanistic plasticity of gyrase and might pave the way for finding novel and specific mechanism-based gyrase inhibitors.

SUBMITTER: Gubaev A 

PROVIDER: S-EPMC5137430 | biostudies-literature | 2016 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism.

Gubaev Airat A   Weidlich Daniela D   Klostermeier Dagmar D  

Nucleic acids research 20160823 21


The topological state of DNA is important for replication, recombination and transcription, and is regulated in vivo by DNA topoisomerases. Gyrase introduces negative supercoils into DNA at the expense of ATP hydrolysis. It is the accepted view that gyrase achieves supercoiling by a strand passage mechanism, in which double-stranded DNA is cleaved, and a second double-stranded segment is passed through the gap, converting a positive DNA node into a negative node. We show here that gyrase with on  ...[more]

Similar Datasets

| S-EPMC3553957 | biostudies-literature
| S-EPMC484171 | biostudies-literature
| S-EPMC7598504 | biostudies-literature
| S-EPMC3763546 | biostudies-literature
| S-EPMC7038939 | biostudies-literature
| S-EPMC8368997 | biostudies-literature
| S-EPMC125824 | biostudies-literature
| S-EPMC4117796 | biostudies-literature
| S-EPMC1162982 | biostudies-other
| S-EPMC3735185 | biostudies-literature