Unknown

Dataset Information

0

New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage.


ABSTRACT: The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quantitative method to measure the activity of cyclin-dependent kinases-2 (CDK2) by western blotting in the presence of active compound. In addition, molecular docking revealed that benzo[h]quinolines can correctly dock into the hydrophobic pocket of the targets receptor protein aromatase and CDK2, while their bioavailability/drug-likeness was predicted to be acceptable but requires future optimization. These findings reveal that benzo[h]quinolines act as anti-cancer agents by inducing oxidative stress-mediated DNA damage.

SUBMITTER: Yadav DK 

PROVIDER: S-EPMC5138627 | biostudies-literature | 2016 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage.

Yadav Dharmendra K DK   Rai Reeta R   Kumar Naresh N   Singh Surjeet S   Misra Sanjeev S   Sharma Praveen P   Shaw Priyanka P   Pérez-Sánchez Horacio H   Mancera Ricardo L RL   Choi Eun Ha EH   Kim Mi-Hyun MH   Pratap Ramendra R  

Scientific reports 20161206


The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quanti  ...[more]

Similar Datasets

| S-EPMC6915015 | biostudies-literature
| S-EPMC6686466 | biostudies-other
| S-EPMC11321054 | biostudies-literature
| S-EPMC9188427 | biostudies-literature
| S-EPMC10487408 | biostudies-literature
| S-EPMC10058827 | biostudies-literature
| S-EPMC8208465 | biostudies-literature
| S-EPMC7794559 | biostudies-literature
| S-EPMC7815493 | biostudies-literature
| S-EPMC8641949 | biostudies-literature