Chiral Sulfoxide-Induced Single Turn Peptide α-Helicity.
Ontology highlight
ABSTRACT: Inducing α-helicity through side-chain cross-linking is a strategy that has been pursued to improve peptide conformational rigidity and bio-availability. Here we describe the preparation of small peptides tethered to chiral sulfoxide-containing macrocyclic rings. Furthermore, a study of structure-activity relationships (SARs) disclosed properties with respect to ring size, sulfur position, oxidation state, and stereochemistry that show a propensity to induce α-helicity. Supporting data include circular dichroism spectroscopy (CD), NMR spectroscopy, and a single crystal X-ray structure for one such stabilized peptide. Finally, theoretical studies are presented to elucidate the effect of chiral sulfoxides in inducing backbone α-helicity.
Project description:Chignolin, which consists of 10 amino acids, adopts two stable states in simulations at room temperature at 1 atm: the native and misfolded states. The sequence of chignolin is optimized to form a stable π-turn and thus the native state has a π-turn from Asp3 to Thr8. On the other hand, the misfolded state adopts an α-turn from Asp3 to Gly7. We previously investigated the differences in the stability mechanism of the two states using computational techniques. Our previous detailed energy analysis implied that the native state was stabilized by hydrogen bonding between the side chain atoms of Thr6 and Thr8, and Thr8 was not involved in stabilization of the misfolded state. Thus, we predicted that mutation of Thr8 to a neutral amino acid could stabilize the misfolded structure over the native structure. In the present work, we performed 4 μs molecular dynamics simulations for 19 mutants of the 8th residue. Among them, the T8I, T8F, T8P, T8N, and T8Y mutants, in which the 8th residue was changed to a neutral residue, formed only the misfolded structure at room temperature. Even at high temperature, for the T8P mutant, the native structure was not observed, as the T8P mutant cannot form the native structure because of steric hindrance caused by the distinctive cyclic structure of proline. Interestingly, the T8P mutant at high temperature has trans and cis conformations in the Gly7-Pro8 sequence, with the trans conformation corresponding to the misfolded state. NMR analysis of the T8P mutant supported our results.
Project description:Development of functional materials capable of exhibiting chirality tunable circularly polarized luminescence (CPL) is currently in high demand for potential technological applications. Herein we demonstrate the formation of both left- and right-handed fluorescent helical superstructures from each enantiomer of a chiral tetraphenylethylene derivative through judicious choice of the solution processing conditions. Interestingly, both the aggregation induced emission active enantiomers exhibit handedness inversion of their supramolecular helical assemblies just by varying the solution polarity without any change in their molecular chirality. The resulting helical supramolecular aggregates from each enantiomer are capable of emitting circularly polarized light, thus enabling both right- and left-handed CPL from a single chiral material. The left- and right-handed supramolecular helical aggregates in the dried films have been characterized using spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. These new chiral aggregation induced emission compounds could find applications in devices where CPL of opposite handedness is required from the same material and would facilitate our understanding of the formation of helical assemblies with switchable supramolecular chirality.
Project description:In nature, α-helical peptides adopt right-handed conformations that are dictated by L-amino acids. Isolating one-handed α-helical peptides composed of only achiral components remains a significant challenge. Here, this goal is achieved by optical resolution of the corresponding racemic (quasi-)static α-helical peptide with double stapling, which effectively freezes the interconversion between the right-handed (P)- and left-handed (M)-α-helices. An as-obtained doubly stapled analogue having an unprotected L-valine residue at the C-terminus transforms from a kinetically trapped (M)-α-helix to a thermodynamically stable (P)-α-helix upon heating. In contrast, the corresponding singly stapled α-helical peptide undergoes an acid/base-triggered and solvent-induced reversible inversion of its preferred helicity within minutes. The interconversion rates of the singly and doubly stapled α-helical peptide foldamers are approximately 106 and 1012 times slower, respectively, than that of a non-stapled dynamic helical peptide. Therefore, the enantiopure doubly-stapled (quasi-)static α-helical peptide would retain its optical activity for several years at 25 °C.
Project description:Weyl semimetals are crystals in which electron bands cross at isolated points in momentum space. Associated with each crossing point (or Weyl node) is a topological invariant known as the Berry monopole charge. The circular photogalvanic effect (CPGE), whereby circular polarized light generates a helicity-dependent photocurrent, is a notable example of a macroscopic property that emerges directly from the topology of the Weyl semimetal band structure. Recently, it was predicted that the amplitude of the CPGE associated with optical transitions near a Weyl node is proportional to its monopole charge. In chiral Weyl systems, nodes of opposite charge are nondegenerate, opening a window of wavelengths where the CPGE resulting from uncompensated Berry charge can emerge. Here, we report measurements of CPGE in the chiral Weyl semimetal RhSi, revealing a CPGE response in an energy window that closes at 0.65 eV, in agreement with the predictions of density functional theory.
Project description:Active fluids are a class of nonequilibrium systems where energy is injected into the system continuously by the constituent particles themselves. Many examples, such as bacterial suspensions and actomyosin networks, are intrinsically chiral at a local scale, so that their activity involves torque dipoles alongside the force dipoles usually considered. Although many aspects of active fluids have been studied, the effects of chirality on them are much less known. Here, we study by computer simulation the dynamics of an unstructured droplet of chiral active fluid in three dimensions. Our model considers only the simplest possible combination of chiral and achiral active stresses, yet this leads to an unprecedented range of complex motilities, including oscillatory swimming, helical swimming, and run-and-tumble motion. Strikingly, whereas the chirality of helical swimming is the same as the microscopic chirality of torque dipoles in one regime, the two are opposite in another. Some of the features of these motility modes resemble those of some single-celled protozoa, suggesting that underlying mechanisms may be shared by some biological systems and synthetic active droplets.
Project description:A full account of our efforts toward an asymmetric redox bicycloisomerization reaction is presented in this article. Cyclopentadienylruthenium (CpRu) complexes containing tethered chiral sulfoxides were synthesized via an oxidative [3 + 2] cycloaddition reaction between an alkyne and an allylruthenium complex. Sulfoxide complex 1 containing a p-anisole moiety on its sulfoxide proved to be the most efficient and selective catalyst for the asymmetric redox bicycloisomerization of 1,6- and 1,7-enynes. This complex was used to synthesize a broad array of [3.1.0] and [4.1.0] bicycles. Sulfonamide- and phosphoramidate-containing products could be deprotected under reducing conditions. Catalysis performed with enantiomerically enriched propargyl alcohols revealed a matched/mismatched effect that was strongly dependent on the nature of the solvent.
Project description:Glucagon-like peptide-1 (GLP-1) signaling through the glucagon-like peptide 1 receptor (GLP-1R) is a key regulator of normal glucose metabolism, and exogenous GLP-1R agonist therapy is a promising avenue for the treatment of type 2 diabetes mellitus. To date, the development of therapeutic GLP-1R agonists has focused on producing drugs with an extended serum half-life. This has been achieved by engineering synthetic analogs of GLP-1 or the more stable exogenous GLP-1R agonist exendin-4 (Ex-4). These synthetic peptide hormones share the overall structure of GLP-1 and Ex-4, with a C-terminal helical segment and a flexible N-terminal tail. Although numerous studies have investigated the molecular determinants underpinning GLP-1 and Ex-4 binding and signaling through the GLP-1R, these have primarily focused on the length and composition of the N-terminal tail or on how to modulate the helicity of the full-length peptides. Here, we investigate the effect of C-terminal truncation in GLP-1 and Ex-4 on the cAMP pathway. To ensure helical C-terminal regions in the truncated peptides, we produced a series of chimeric peptides combining the N-terminal portion of GLP-1 or Ex-4 and the C-terminal segment of the helix-promoting peptide α-conotoxin pl14a. The helicity and structures of the chimeric peptides were confirmed using circular dichroism and NMR, respectively. We found no direct correlation between the fractional helicity and potency in signaling via the cAMP pathway. Rather, the most important feature for efficient receptor binding and signaling was the C-terminal helical segment (residues 22-27) directing the binding of Phe(22) into a hydrophobic pocket on the GLP-1R.
Project description:The presence of anomalous chirality in a roll of graphitic carbon sheets has been recognized since the discovery of carbon nanotubes, which are becoming available in higher quantities through the isolation of chiral single-wall congeners with high purity. Exploration of the properties arising from cylinder chirality is expected to expand the scope of tubular entities in the future. By studying molecular fragments of helical carbon nanotubes, we herein reveal interesting properties that arise from this chirality. The chirality of nanoscale cylinders resulted in chirality of larger dimensions in the form of a double-helix assembly. Cylinder chirality in solution gave rise to a large dissymmetry factor of metal-free entities in circular polarized luminescence. Theoretical investigations revealed the pivotal role of cylindrical shapes in enhancing magnetic dipole transition moments to yield extreme rotatory strength. Unique effects of cylinder chirality in this study may prompt the development of tubular entities, for instance, toward chiroptical applications.
Project description:Helicene is a functional material with chirality caused by its characteristic helical geometry. The inversion of its helicity by external stimuli is a challenging task in the advanced control of the molecular chirality. This study fabricated a novel helical molecule, specifically a pentahelicene-analogue twisted aromatic hydrocarbon fused with a graphene nanoribbon, via on-surface synthesis using multiple precursors. Noncontact atomic force microscopy imaging with high spatial resolution confirmed the helicity of the reaction products. The helicity was geometrically converted by pushing a CO-terminated tip into the twisted framework, which is the first demonstration of helicity switching at the single-molecule scale.
Project description:The transition from α-helical to β-hairpin conformations of α-syn12 peptide is characterized here using long timescale, unbiased molecular dynamics (MD) simulations in explicit solvent models at physiological and acidic pH values. Four independent normal MD trajectories, each 2500 ns, are performed at 300 K using the GROMOS 43A1 force field and SPC water model. The most clustered structures at both pH values are β-hairpin but with different turns and hydrogen bonds. Turn9-6 and four hydrogen bonds (HB9-6, HB6-9, HB11-4 and HB4-11) are formed at physiological pH; turn8-5 and five hydrogen bonds (HB8-5, HB5-8, HB10-3, HB3-10 and HB12-1) are formed at acidic pH. A common folding mechanism is observed: the formation of the turn is always before the formation of the hydrogen bonds, which means the turn is always found to be the major determinant in initiating the transition process. Furthermore, two transition paths are observed at physiological pH. One of the transition paths tends to form the most-clustered turn and improper hydrogen bonds at the beginning, and then form the most-clustered hydrogen bonds. Another transition path tends to form the most-clustered turn, and turn5-2 firstly, followed by the formation of part hydrogen bonds, then turn5-2 is extended and more hydrogen bonds are formed. The transition path at acidic pH is as the same as the first path described at physiological pH.