Unknown

Dataset Information

0

Stochastic quantum Zeno-based detection of noise correlations.


ABSTRACT: A system under constant observation is practically freezed to the measurement subspace. If the system driving is a random classical field, the survival probability of the system in the subspace becomes a random variable described by the Stochastic Quantum Zeno Dynamics (SQZD) formalism. Here, we study the time and ensemble average of this random survival probability and demonstrate how time correlations in the noisy environment determine whether the two averages do coincide or not. These environment time correlations can potentially generate non-Markovian dynamics of the quantum system depending on the structure and energy scale of the system Hamiltonian. We thus propose a way to detect time correlations of the environment by coupling a quantum probe system to it and observing the survival probability of the quantum probe in a measurement subspace. This will further contribute to the development of new schemes for quantum sensing technologies, where nanodevices may be exploited to image external structures or biological molecules via the surface field they generate.

SUBMITTER: Muller MM 

PROVIDER: S-EPMC5150251 | biostudies-literature | 2016 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stochastic quantum Zeno-based detection of noise correlations.

Müller Matthias M MM   Gherardini Stefano S   Caruso Filippo F  

Scientific reports 20161212


A system under constant observation is practically freezed to the measurement subspace. If the system driving is a random classical field, the survival probability of the system in the subspace becomes a random variable described by the Stochastic Quantum Zeno Dynamics (SQZD) formalism. Here, we study the time and ensemble average of this random survival probability and demonstrate how time correlations in the noisy environment determine whether the two averages do coincide or not. These environ  ...[more]

Similar Datasets

| S-EPMC4371940 | biostudies-literature
| S-EPMC5603598 | biostudies-literature
| S-EPMC7815882 | biostudies-literature
| S-EPMC4664959 | biostudies-other
| S-EPMC4403339 | biostudies-literature
| S-EPMC4942788 | biostudies-other
| S-EPMC4477237 | biostudies-other
| S-EPMC3916840 | biostudies-other
| S-EPMC8586144 | biostudies-literature