Unknown

Dataset Information

0

Molecular and Proteomic Analysis of Levofloxacin and Metronidazole Resistant Helicobacter pylori.


ABSTRACT: Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori. Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm-forming ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography/mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrate the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA. This may explain the lack of mutations in target genes in ~10% of metronidazole resistant strains.

SUBMITTER: Hanafi A 

PROVIDER: S-EPMC5157799 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular and Proteomic Analysis of Levofloxacin and Metronidazole Resistant <i>Helicobacter pylori</i>.

Hanafi Aimi A   Lee Woon Ching WC   Loke Mun Fai MF   Teh Xinsheng X   Shaari Ain A   Dinarvand Mojdeh M   Lehours Philippe P   Mégraud Francis F   Leow Alex Hwong Ruey AH   Vadivelu Jamuna J   Goh Khean Lee KL  

Frontiers in microbiology 20161215


Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in <i>H. pylori</i>. Five strains of levofloxacin-sensitive <i>H. pylori</i> were induced <i>in vitro</i> to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant <i>H. pylori</i> strains were isolated from  ...[more]

Similar Datasets

| S-EPMC4357745 | biostudies-literature
| S-EPMC6362932 | biostudies-literature
| S-EPMC6436749 | biostudies-literature
| S-EPMC3738536 | biostudies-literature
| S-EPMC3988589 | biostudies-literature
| S-EPMC6513510 | biostudies-literature
| S-EPMC6420558 | biostudies-literature
| S-EPMC2915426 | biostudies-literature
| S-EPMC5784897 | biostudies-other
| S-EPMC1068630 | biostudies-literature