Project description:AIMS:To the best of our knowledge, there are no systematic reviews or meta-analyses that compare rasagiline, selegiline and safinamide. Therefore, we aimed to perform a drug class review comparing all available monoamine oxidase type B (MAO-B) inhibitors in a multiple treatment comparison. METHODS:We performed a systematic literature search to identify randomized controlled trials assessing the efficacy of MAO-B inhibitors in patients with Parkinson's disease. MAO-B inhibitors were evaluated either as monotherapy or in combination with levodopa or dopamine agonists. Endpoints of interest were change in the Unified Parkinson's Disease Rating Scale (UPDRS) score and serious adverse events. We estimated the relative effect of each MAO-B inhibitor versus the comparator drug by creating three networks of direct and indirect comparisons. For each of the networks, we considered a joint model. RESULTS:The systematic literature search and study selection process identified 27 publications eligible for our three network analyses. We found the relative effects of rasagiline, safinamide and selegiline treatment given alone and compared to placebo in a model without explanatory variables to be 1.560 (1.409, 1.734), 1.449 (0.873, 2.413) and 1.532 (1.337, 1.757) respectively. We also found all MAO-B inhibitors to be efficient when given together with levodopa. When ranking the MAO-B inhibitors given in combination with levodopa, selegiline was the most effective and rasagiline was the second best. CONCLUSIONS:All of the included MAO-B inhibitors were effective compared to placebo when given as monotherapy. Combination therapy with MAO-B inhibitors and levodopa showed that all three MAO-B inhibitors were effective compared to placebo, but selegiline was the most effective drug.
Project description:A few years after the foundation of the British Pharmacological Society, monoamine oxidase (MAO) was recognized as an enzyme of crucial interest to pharmacologists because it catalyzed the major inactivation pathway for the catecholamine neurotransmitters, noradrenaline, adrenaline and dopamine (and, later, 5-hydroxytryptamine, as well). Within the next decade, the therapeutic value of inhibitors of MAO in the treatment of depressive illness was established. Although this first clinical use exposed serious side effects, pharmacological interest in, and investigation of, MAO continued, resulting in the characterization of two isoforms, MAO-A and -B, and isoform-selective inhibitors. Selective inhibitors of MAO-B have found a therapeutic role in the treatment of Parkinson's disease and further developments have provided reversible inhibitors of MAO-A, which offer antidepressant activity without the serious side effects of the earlier inhibitors. Clinical observation and subsequent pharmacological analysis have also generated the concept of neuroprotection, reflecting the possibility of slowing, halting and maybe reversing, neurodegeneration in Parkinson's or Alzheimer's diseases. Increased levels of oxidative stress in the brain may be critical for the initiation and progress of neurodegeneration and selective inhibition of brain MAO could contribute importantly to lowering such stress. There are complex interactions between free iron levels in brain and MAO, which may have practical outcomes for depressive disorders. These aspects of MAO and its inhibition and some indication of how this important area of pharmacology and therapeutics might develop in the future are summarized in this review.
Project description:ObjectiveTo quantify more reliably the benefits and risks of monoamine oxidase type B inhibitors (MAOBIs) in early Parkinson's disease.Data sourcesSearches of the Cochrane Library, Medline, Embase, PubMed, and Web of Science for years 1966-2003, plus major journals in the field, abstract books, and proceedings of meetings, for randomised trials comparing MAOBIs with placebo or levodopa.Data extractionAvailable data on mortality, motor complications, side effects, treatment compliance, and clinician rated disability (for example, unified Parkinson's disease rating scale) were extracted from 17 trials and combined using standard meta-analytic methods.ResultsNo significant difference in mortality existed between patients on MAOBIs and control patients (odds ratio 1.13, 95% confidence interval 0.94 to 1.34; P = 0.2). Patients randomised to MAOBIs had significantly better total scores, motor scores, and activities of daily living scores on the unified Parkinson's disease rating scale at three months compared with patients taking placebo; they were also less likely to need additional levodopa (0.57, 0.48 to 0.67; P < 0.00001) or to develop motor fluctuations (0.75, 0.59 to 0.95; P = 0.02). No difference existed between the two groups in the incidence of side effects or withdrawal of patients.ConclusionsMAOBIs reduce disability, the need for levodopa, and the incidence of motor fluctuations, without substantial side effects or increased mortality. However, because few trials have compared MAOBIs with other antiparkinsonian drugs, uncertainty remains about the relative benefits and risks of MAOBIs. Further large, long term comparative trials that include patient rated quality of life measures are needed.
Project description:The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia.
Project description:PurposeTo investigate the comparative effectiveness of dopamine agonists and monoamine oxidase type-B (MAO-B) inhibitors available for treatment of Parkinson's disease.MethodsWe performed a systematic literature search identifying randomized controlled trials investigating 4 dopamine agonists (cabergoline, pramipexole, ropinirole, rotigotine) and 3 MAO-B inhibitors (selegiline, rasagiline, safinamide) for Parkinson's disease. We extracted and pooled data from included clinical trials in a joint model allowing both direct and indirect comparison of the seven drugs. We considered dopamine agonists and MAO-B inhibitors given as monotherapy or in combination with levodopa. Selected endpoints were change in the Unified Parkinson's Disease Rating Scale (UPDRS) score, serious adverse events and withdrawals. We estimated the relative effectiveness of each dopamine agonist and MAO-B inhibitor versus comparator drug.ResultsAltogether, 79 publications were included in the analysis. We found all the investigated drugs to be effective compared with placebo when given as monotherapy except safinamide. When considering combination treatment, the estimated relative effects of selegiline, pramipexole, ropinirole, rotigotine, cabergoline, rasagiline and safinamide were 2.316 (1.819, 2.951), 2.091 (1.889, 2.317), 2.037 (1.804, 2.294), 1.912 (1.716, 2.129), 1.664 (1.113, 2.418), 1.584 (1.379, 1.820) and 1.179 (1.031, 1.352), respectively, compared with joint placebo and levodopa treatment.ConclusionsDopamine agonists were found to be effective as treatment for Parkinson's disease, both when given as monotherapy and in combination with levodopa. Selegiline and rasagiline were also found to be effective for treating Parkinson's disease, and selegiline was the best option in combination with levodopa among all the drugs investigated.
Project description:Amphetamine and its derivatives exhibit a wide range of pharmacological activities, including psychostimulant, hallucinogenic, entactogenic, anorectic, or antidepressant effects. The mechanisms of action underlying these effects are usually related to the ability of the different amphetamines to interact with diverse monoamine transporters or receptors. Moreover, many of these compounds are also potent and selective monoamine oxidase inhibitors. In the present work, we review how structural modifications on the aromatic ring, the amino group and/or the aliphatic side chain of the parent scaffold, modulate the enzyme inhibitory properties of hundreds of amphetamine derivatives. Furthermore, we discuss how monoamine oxidase inhibition might influence the pharmacology of these compounds.
Project description:Monoamine oxidase inhibitors (MAOIs) are being developed for major depressive disorder, Alzheimer's, and Parkinson's Disease. Newer MAOIs have minimal sensitivity to tyramine, but a key limitation for optimizing their development is that standards for in vivo monoamine oxidase-A (MAO-A) occupancy in humans are not well established. The objectives were to determine the dose-occupancy relationship of moclobemide and the occupancy of phenelzine at typical clinical dosing. Major depressive episode (MDE) subjects underwent [(11)C]harmine positron emission tomography scanning prior to and following 6 weeks of treatment with moclobemide or phenelzine. Mean brain MAO-A occupancies were 74.23±8.32% for moclobemide at 300-600 mg daily (n = 11), 83.75±5.52% for moclobemide at 900-1200 mg daily (n = 9), and 86.82±6.89% for phenelzine at 45-60 mg daily (n = 4). The regional dose-occupancy relationship of moclobemide fit a hyperbolic function [F(x) = a(x/[b + x]); F(1,18) = 5.57 to 13.32, p = 0.002 to 0.03, mean 'a': 88.62±2.38%, mean 'b': 69.88±4.36 mg]. Multivariate analyses of variance showed significantly greater occupancy of phenelzine (45-60mg) and higher-dose moclobemide (900-1200 mg) compared to lower-dose moclobemide [300-600 mg; F(7,16) = 3.94, p = 0.01]. These findings suggest that for first-line MDE treatment, daily moclobemide doses of 300-600mg correspond to a MAO-A occupancy of 74%, whereas for treatment-resistant MDE, either phenelzine or higher doses of moclobemide correspond to a MAO-A occupancy of at least 84%. Therefore, novel MAO inhibitor development should aim for similar thresholds. The findings provide a rationale in treatment algorithm design to raise moclobemide doses to inhibit more MAO-A sites, but suggest switching from high-dose moclobemide to phenelzine is best justified by binding to additional targets.
Project description:Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson's disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and "disease-modifying or neuroprotective" therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Project description:BackgroundDepression is a major nonmotor symptom of Parkinson's disease (PD). However, few treatments exist for PD depression. Monoamine oxidase-B inhibitors (MAOB-Is) provide symptomatic relief for the motor symptoms of PD and exert antidepressive effects. The present meta-analysis of randomized controlled trials (RCTs) investigated the effects of MAOB-Is on depressive symptoms in patients with PD.MethodsArticles on PD-management-related RCTs using one of three MAOB-Is approved by the US Food and Drug Administration, that is, selegiline, rasagiline, and safinamide, were identified. The primary outcomes were the benefits of MAOB-Is for depressive symptoms. Subgroup analysis included the effects of MAOB-Is on patients in the early versus middle-to-late stages of PD and the effect of short-term versus long-term treatment.ResultsOverall, six studies were included, four of which were conducted on patients with early stage PD. Overall, MAOB-Is significantly reduced the severity of depressive symptoms [standardized mean difference (SMD): -0.14, 95% confidence interval (CI): -0.21 to -0.06, p < 0.001]. Subgroup analysis indicated that the positive effect of MAOB-Is was significant in patients with early stage PD (SMD: -0.20, 95% CI: -0.31 to -0.09, p < 0.001), but not in those with middle-to-late-stage PD (SMD: -0.07, 95% CI: -0.17 to 0.03, p = 0.18). The antidepressive effect was significant for short-term treatment, that is, 90-120 days (SMD: -0.23, 95% CI: -0.35 to -0.10, p < 0.001), but not long-term treatment, that is, 24 weeks to 18 months (SMD: -0.08, 95% CI: -0.18 to 0.01, p = 0.09).ConclusionIn addition to the treatment of PD motor symptoms, MAOB-Is may help reduce the severity of depressive symptoms in PD, especially in patients with early stage PD. Considering the tolerability and simultaneous benefits of MAOB-Is, further RCTs are warranted to confirm their therapeutic effects in moderate-to-severe PD depression.
Project description:Dopaminergic neurodegeneration in Parkinson's disease (PD) is associated with abnormal dopamine metabolism by MAO-B (monoamine oxidase-B) and intracellular ?-Synuclein (?-Syn) aggregates, called the Lewy body. However, the molecular relationship between ?-Syn and MAO-B remains unclear. Here, we show that ?-Syn directly binds to MAO-B and stimulates its enzymatic activity, which triggers AEP (asparagine endopeptidase; legumain) activation and subsequent ?-Syn cleavage at N103, leading to dopaminergic neurodegeneration. Interestingly, the dopamine metabolite, DOPAL, strongly activates AEP, and the N103 fragment of ?-Syn binds and activates MAO-B. Accordingly, overexpression of AEP in SNCA transgenic mice elicits ?-Syn N103 cleavage and accelerates PD pathogenesis, and inhibition of MAO-B by Rasagiline diminishes ?-Syn-mediated PD pathology and motor dysfunction. Moreover, virally mediated expression of ?-Syn N103 induces PD pathogenesis in wild-type, but not MAO-B-null mice. Our findings thus support that AEP-mediated cleavage of ?-Syn at N103 is required for the association and activation of MAO-B, mediating PD pathogenesis.