Unknown

Dataset Information

0

Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis.


ABSTRACT: The model cyanobacterium, Synechococcus elongatus PCC 7942, is a genetically tractable obligate phototroph that is being developed for the bioproduction of high-value chemicals. Genome-scale models (GEMs) have been successfully used to assess and engineer cellular metabolism; however, GEMs of phototrophic metabolism have been limited by the lack of experimental datasets for model validation and the challenges of incorporating photon uptake. Here, we develop a GEM of metabolism in S. elongatus using random barcode transposon site sequencing (RB-TnSeq) essential gene and physiological data specific to photoautotrophic metabolism. The model explicitly describes photon absorption and accounts for shading, resulting in the characteristic linear growth curve of photoautotrophs. GEM predictions of gene essentiality were compared with data obtained from recent dense-transposon mutagenesis experiments. This dataset allowed major improvements to the accuracy of the model. Furthermore, discrepancies between GEM predictions and the in vivo dataset revealed biological characteristics, such as the importance of a truncated, linear TCA pathway, low flux toward amino acid synthesis from photorespiration, and knowledge gaps within nucleotide metabolism. Coupling of strong experimental support and photoautotrophic modeling methods thus resulted in a highly accurate model of S. elongatus metabolism that highlights previously unknown areas of S. elongatus biology.

SUBMITTER: Broddrick JT 

PROVIDER: S-EPMC5187688 | biostudies-literature | 2016 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis.

Broddrick Jared T JT   Rubin Benjamin E BE   Welkie David G DG   Du Niu N   Mih Nathan N   Diamond Spencer S   Lee Jenny J JJ   Golden Susan S SS   Palsson Bernhard O BO  

Proceedings of the National Academy of Sciences of the United States of America 20161201 51


The model cyanobacterium, Synechococcus elongatus PCC 7942, is a genetically tractable obligate phototroph that is being developed for the bioproduction of high-value chemicals. Genome-scale models (GEMs) have been successfully used to assess and engineer cellular metabolism; however, GEMs of phototrophic metabolism have been limited by the lack of experimental datasets for model validation and the challenges of incorporating photon uptake. Here, we develop a GEM of metabolism in S. elongatus us  ...[more]

Similar Datasets

| S-EPMC8146198 | biostudies-literature
| S-EPMC2413144 | biostudies-literature
| S-EPMC3658275 | biostudies-literature
| S-EPMC6682621 | biostudies-literature
| S-EPMC5512215 | biostudies-literature
| S-EPMC7787483 | biostudies-literature
| S-EPMC4807923 | biostudies-literature
| S-EPMC6657051 | biostudies-literature
| S-EPMC9477255 | biostudies-literature
| S-EPMC3495714 | biostudies-literature