Project description:From a migrating golden jackal (Canis aureus), we retrieved 21 live male Dermacentor reticulatus ticks, a species not previously reported from wildlife in Denmark. We identified Rickettsia raoultii from 18 (86%) of the ticks. This bacterium is associated with scalp eschar and neck lymphadenopathy after tick bite syndrome among humans.
Project description:BackgroundContinuous culture of tick cell lines has proven a valuable asset in isolating and propagating several different vector-borne pathogens, making it possible to study these microorganisms under laboratory conditions and develop serological tests to benefit public health. We describe a method for effective, cost- and labor-efficient isolation and propagation of Rickettsia raoultii using generally available laboratory equipment and Rhipicephalus microplus cells, further demonstrating the usefulness of continuous tick cell lines. R. raoultii is one of the causative agents of tick-borne lymphadenopathy (TIBOLA) and is, together with its vector Dermacentor reticulatus, emerging in novel regions of Europe, giving rise to an increased threat to general public health.MethodsDermacentor reticulatus ticks were collected in the Donau-Auen (Lobau) national park in Vienna, Austria. The hemolymph of ten collected ticks was screened by PCR-reverse line blot for the presence of rickettsial DNA. A single tick tested positive for R. raoultii DNA and was used to infect Rhipicephalus microplus BME/CTVM2 cells.ResultsSixty-five days after infection of the tick-cell line with an extract from a R. raoultii-infected tick, we observed intracellular bacteria in the cultured cells. On the basis of microscopy we suspected that the intracellular bacteria were a species of Rickettsia; this was confirmed by several PCRs targeting different genes. Subsequent sequencing showed 99-100 % identity with R. raoultii. Cryopreservation and resuscitation of R. raoultii was successful. After 28 days identical intracellular bacteria were microscopically observed.ConclusionsR. raoultii was successfully isolated and propagated from D. reticulatus ticks using R. microplus BME/CTVM2 cells. The isolated strain shows significant molecular variation compared to currently known sequences. Furthermore we show for the first time the successful cryopreservation and resuscitation of R. raoultii.
Project description:Tick cell lines play an important role in research on ticks and tick-borne pathogenic and symbiotic microorganisms. In an attempt to derive continuous Dermacentor reticulatus cell lines, embryo-derived primary cell cultures were set up from eggs laid by field ticks originally collected as unfed adults in The Netherlands and maintained for up to 16 months. After several months, it became evident that cells in the primary cultures were infected with a Rickettsia-like intracellular organism. Supernatant medium containing some D. reticulatus cells was inoculated into cultures of 2 Rhipicephalus (Boophilus) microplus cell lines, BME/CTVM2 and BME/CTVM23, where abundant growth of the bacteria occurred intracellularly on transfer to both cell lines. Bacterial growth was monitored by light (live, inverted microscope, Giemsa-stained cytocentrifuge smears) and transmission electron microscopy revealing heavy infection with typical intracytoplasmic Rickettsia-like bacteria, not present in uninfected cultures. DNA was extracted from bacteria-infected and uninfected control cultures, and primers specific for Rickettsia 16S rRNA, ompB, and sca4 genes were used to generate PCR products that were subsequently sequenced. D. reticulatus primary cultures and both infected tick cell lines were positive for all 3 Rickettsia genes. Sequencing of PCR products revealed 99-100% identity with published Rickettsia raoultii sequences. The R. raoultii also grew abundantly in the D. nitens cell line ANE58, poorly in the D. albipictus cell line DALBE3, and not at all in the D. andersoni cell line DAE15. In conclusion, primary tick cell cultures and cell lines are useful systems for isolation and propagation of fastidious tick-borne microorganisms. In vitro isolation of R. raoultii from Dutch D. reticulatus confirms previous PCR-based detection in field ticks, and presence of the bacteria in the tick eggs used to initiate the primary cultures confirms that transovarial transmission of this Rickettsia occurs.
Project description:We report on the molecular evidence that Dermacentor reticulatus ticks in Croatia are infected with Rickettsia helvetica (10%) or Rickettsia slovaca (2%) or co-infected with both species (1%). These findings expand the knowledge of the geographic distribution of R. helvetica and D. reticulatus ticks.
Project description:BackgroundTick-borne rickettsial pathogens are emerging worldwide and pose an increased health risk to both humans and animals. A plethora of rickettsial species has been identified in ticks recovered from human and animal patients. However, the detection of rickettsial DNA in ticks does not necessarily mean that these ticks can act as vectors for these pathogens. Here, we used artificial feeding of ticks to confirm transmission of Rickettsia massiliae and Rickettsia raoultii by Rhipicephalus sanguineus (sensu lato) and Dermacentor reticulatus ticks, respectively. The speed of transmission was also determined.MethodsAn artificial feeding system based on silicone membranes were used to feed adult R. sanguineus (s.l.) and D. reticulatus ticks. Blood samples from in vitro feeding units were analysed for the presence of rickettsial DNA using PCR and reverse line blot hybridisation.ResultsThe attachment rate of R. sanguineus (s.l.) ticks were 40.4% at 8 h post-application, increasing to 70.2% at 72 h. Rickettsia massiliae was detected in blood samples collected 8 h after the R. sanguineus (s.l.) ticks were placed into the in vitro feeding units. D. reticulatus ticks were pre-fed on sheep and subsequently transferred to the in vitro feeding system. The attachment rate was 29.1 % at 24 h post-application, increasing to 43.6 % at 96 h. Rickettsia raoultii was detected in blood collected 24 h after D. reticulatus was placed into the feeding units.ConclusionsRhipicephalus sanguineus (s.l.) and D. reticulatus ticks are vectors of R. massiliae and R. raoultii, respectively. The transmission of R. massiliae as early as 8 h after tick attachment emphasises the importance of removing ticks as soon as possible to minimise transmission. This study highlights the relevance of in vitro feeding systems to provide insight into the vectorial capacity of ticks and the dynamics of tick-borne pathogen transmission.
Project description:We collected 1,671 Dermacentor reticulatus ticks from 17 locations in the Czech Republic, Slovakia, and Hungary. We found 47.9% overall prevalence of Rickettsia species in ticks over all locations. Sequence analysis confirmed that all tested samples belonged to R. raoultii, the causative agent of tick-borne lymphadenopathy.
Project description:PurposeBacteria of the genus Bartonella are obligate parasites of vertebrates. Their distribution range covers almost the entire world, from the Americas to Europe and Asia. Many Bartonella species use rodents as reservoirs, and while much is known about Bartonella infection of rodents in central Europe, its extent is poorly understood in Eastern Europe.MethodsThe present study examines five rodent species (Apodemus flavicollis, Myodes glareolus, Microtus arvalis, Apodemus agrarius, Apodemus sylvaticus) in the Chernobyl Exclusion Zone in Ukraine. Total of 36 small mammals were captured in September 2017.ResultsThe overall prevalence of Bartonella spp. was 38.9% (14/36) in rodents. Obtained four sequences from Apodemus flavicollis, were identical to Bartonella grahamii and B. taylorii.ConclusionThis is the first report to confirm the presence of Bartonella spp. in rodents in the Chernobyl Exclusion Zone, Ukraine by molecular methods. The sequences show similarity to Bartonella strains occurring in Europe.
Project description:Dermacentor reticulatus ticks, one of the most important vectors and reservoirs of tick-borne diseases in Europe, are widespread in the temperate climate zone and in some localities in the subtropical climate zone of the western Palaearctic region. These ticks occur in a large area characterised by a varied climate type, vegetation, and availability of potential hosts. Hence, they exhibit high ecological plasticity and adaptability to periodically adverse conditions. The aim of the present study was to investigate the ability of D. reticulatus adults to overwinter in the natural habitat. Specimens marked with a permanent oil marker on the festoons were placed in their natural habitats for the winter. Concurrently, tick survival in laboratory conditions at a temperature of 5 °C and 18 °C was assessed as a control. The groups were compared with each other by determination of the weight of fat bodies. In the field conditions, 67.9% females and 60.0% males survived the winter. There was no significant difference in the survival of ticks in the laboratory. A significantly lower fat body weight was found in the group of ticks overwintering in the field conditions and exhibiting questing activity between spring and late autumn during the following year. On the population scale, adult D. reticulatus ticks are able to survive the winter in temperate climate conditions at a level ensuring a further increase in their population size. In adverse weather conditions, ticks enter diapause, thus maximally reducing the utilisation of the content of their fat bodies. This facilitates long-term survival in the environment.
Project description:During a study to identify zoonotic pathogens in northwestern Mexico, we detected the presence of a rickettsial agent in Dermacentor parumapertus ticks from black-tailed jackrabbits (Lepus californicus). Comparison of 4 gene sequences (gltA, htrA, ompA, and ompB) of this agent showed 99%-100% identity with sequences of Rickettsia parkeri.