Project description:We isolated Tamdy virus (TAMV; strain XJ01/TAMV/China/2018) from Hyalomma asiaticum ticks infesting Bactrian camels in Xinjiang, China, in 2018. The genome of the strain showed high nucleotide similarity with previously described TAMV strains from Asia. Our study highlights the potential threat of TAMV to public health in China.
Project description:BackgroundTo date, anaplasmosis has been reported to be a subclinical disease in Indian and Arabian one-humped camels (Camelus dromedarius) and llamas (Lama glama). However, no information on Anaplasma infection in two-humped Bactrian camels (Camelus bactrianus) in China has been published to date. The aim of this study was to investigate the prevalence of Anaplasma spp. in domestic Bactrian camels and ticks in Xinjiang, China.FindingsA total of 382 ticks were collected from the Bactrian camels and from environmental sources. Of these, 84 were morphologically identified as belonging to the Rhipicephalus sanguineus group and genetically identified (12S rDNA, 16S rDNA and the cytochrome c oxidase 1 genes) as R. sanguineus group ticks (temporally designated as Rhipicephalus sp. Xinjiang). PCR testing showed that 7.2% (20/279) of the camels harbored Anaplasma platys DNA. However, microscopic examination revealed no A. platys inclusions in blood smears from the camels. The PCR prevalence of A. platys DNA was 9.5% (6/63) in Rhipicephalus sp. Xinjiang from the Bactrian camels and 14.3% (3/21) in Rhipicephalus sp. Xinjiang from the vegetation. A. platys DNA was not detected by PCR in other tick species (Hyalomma asiaticum, Dermacentor niveus and Hyalomma dromedarii), and no other Anaplasma species were detected in these samples.ConclusionsThis is the first report of A. platys in Bactrian camels in Xinjiang, China. The moderate positivity observed indicates that these animals might be a natural host for this pathogen in China.
Project description:Cryptosporidium species are ubiquitous enteric protozoan pathogens of vertebrates distributed worldwide. The purpose of this study was to gain insight into the zoonotic potential and genetic diversity of Cryptosporidium spp. in Bactrian camels in Xinjiang, northwestern China. A total of 476 fecal samples were collected from 16 collection sites in Xinjiang and screened for Cryptosporidium by PCR. The prevalence of Cryptosporidium was 7.6% (36/476). Six Cryptosporidium species, C. andersoni (n = 24), C. parvum (n = 6), C. occultus (n = 2), C. ubiquitum (n = 2), C. hominis (n = 1), and C. bovis (n = 1), were identified based on sequence analysis of the small subunit (SSU) rRNA gene. Sequence analysis of the gp60 gene identified six C. parvum isolates as subtypes, such as If-like-A15G2 (n = 5) and IIdA15G1 (n = 1), two C. ubiquitum isolates, such as subtype XIIa (n = 2), and one C. hominis isolate, such as Ixias IkA19G1 (n = 1). This is the first report of C. parvum, C. hominis, C. ubiquitum, and C. occultus in Bactrian camels in China. These results indicated that the Bactrian camel may be an important reservoir for zoonotic Cryptosporidium spp. and these infections may be a public health threat in this region.
Project description:Hepatitis E virus (HEV) is zoonotic and a major cause of acute viral hepatitis worldwide. Recently, we identified a novel HEV genotype 8 (HEV8) in Bactrian camels in Xinjiang, China. However, the epidemiology, pathogenicity, and zoonotic potential of HEV8 are unclear. Here, we present the prevalence of HEV8 in China and investigate its pathogenicity and cross-species transmission in cynomolgus macaques. Fresh fecal and milk samples from Bactrian camels collected from four provinces/regions in China were screened for HEV RNA by reverse transcriptase PCR (RT-PCR). An HEV8-positive sample was used to inoculate two cynomolgus macaques to examine the potential for cross-species infection. The pathogenicity of HEV8 was analyzed by testing HEV markers and liver function during the study period and histopathology of liver biopsy specimens at 3, 13, and 25 weeks postinoculation. Extrahepatic replication was tested by using reverse transcriptase quantitative PCR (RT-qPCR) and immunofluorescence assays. The overall prevalence of HEV8 RNA in Chinese Bactrian camels was 1.4% (4/295), and positive samples were found in three different provinces/regions in China. Histopathology confirmed acute and chronic HEV8 infections in the two monkeys. Multiple tissues were positive for HEV RNA and ORF2 proteins. Renal pathology was observed in the monkey with chronic hepatitis. Whole-genome sequencing showed only 1 to 3 mutations in the HEV8 in the fecal samples from the two monkeys compared to that from the camel. HEV8 is circulating in multiple regions in China. Infection of two monkeys with HEV8 induced chronic and systemic infections, demonstrating the high potential zoonotic risk of HEV8.IMPORTANCE It is estimated that one-third of the world population have been exposed to hepatitis E virus (HEV). In developed countries and China, zoonotic HEV strains are responsible for almost all acute and chronic HEV infection cases. It is always of immediate interest to investigate the zoonotic potential of novel HEV strains. In 2016, we discovered a novel HEV genotype, HEV8, in Bactrian camels, but the epidemiology, zoonotic potential, and pathogenicity of the virus were unknown. In the present study, we demonstrated that HEV8 was circulating in multiple regions in China and was capable of infecting cynomolgus macaques, a surrogate for humans, posing high risk of zoonosis. Chronic hepatitis, systemic infection, and renal pathology were observed. Collectively, these data indicate that HEV8 exhibits a high potential for zoonotic transmission. Considering the importance of Bactrian camels as livestock animals, risk groups, such as camelid meat and milk consumers, should be screened for HEV8 infection.
Project description:In a molecular epidemiology study of hepatitis E virus (HEV) in dromedaries in Dubai, United Arab Emirates, HEV was detected in fecal samples from 3 camels. Complete genome sequencing of 2 strains showed >20% overall nucleotide difference to known HEVs. Comparative genomic and phylogenetic analyses revealed a previously unrecognized HEV genotype.
Project description:HBV genotypes have specific geographical distributions and can serve as epidemiological markers. Accumulated data have shown that the major HBV genotypes in China are B and C. Here, the HBV genotypes were examined from 6817 blood samples, which were collected from patients with chronic HBV infection in Fujian Province during 2006-2013; genotype B was identified in 3384 patients (49·6%), while genotype C was identified in 3430 patients (50·3%). The percentage of patients infected with genotype C gradually increased with age from 39·5% (patients aged 50 years), reaching a peak of 67·3% in the 45-50 years age group. These results clearly demonstrate that the genotype distribution of HBV in Fujian Province has significantly changed in recent years with almost equal numbers of genotype B and genotype C infections existing in the entire patient population, while higher incidence of genotype C infection exists in older patients, but genotype B is no longer dominant in the Fujian area as previously reported.
Project description:BACKGROUND:Enterocytozoon bieneusi is an obligate, intracellular fungus and is commonly reported in humans and animals. To date, there have been no reports of E. bieneusi infections in Bactrian camels (Camelus bactrianus). The present study was conducted to understand the occurrence and molecular characteristics of E. bieneusi in Bactrian camels in China. RESULTS:Of 407 individual Bactrian camel fecal specimens, 30.0% (122) were E. bieneusi-positive by nested polymerase chain reaction (PCR) based on internal transcriber spacer (ITS) sequence analysis. A total of 14 distinct E. bieneusi ITS genotypes were obtained: eight known genotypes (genotype EbpC, EbpA, Henan-IV, BEB6, CM8, CHG16, O and WL17), and six novel genotypes (named CAM1 to CAM6). Genotype CAM1 (59.0%, 72/122) was the most predominant genotype in Bactrian camels in Xinjiang, and genotype EbpC (18.9%, 23/122) was the second-most predominant genotype. Phylogenetic analysis revealed that six known genotypes (EbpC, EbpA, WL17, Henan-IV, CM8 and O) and three novel genotypes (CAM3, CAM5 and CAM6) fell into the human-pathogenic group 1. Two known genotypes (CHG16 and BEB6) fell into the cattle host-specific group 2. The novel genotypes CAM1, CAM 2 and CAM4 cluster into group 8. CONCLUSIONS:To our knowledge, this is the first report of E. bieneusi in Bactrian camels. The host-specific genotype CAM1 was the predominant genotype, which plays a negligible role in the zoonotic transmission of E. bieneusi. However, the second-most predominant genotype, EbpC, has greater zoonotic potential.
Project description:West Nile virus (WNV) was first isolated in mainland China from mosquitoes in Jiashi County, Kashgar Region, Xinjiang in 2011, following local outbreaks of viral meningitis and encephalitis caused by WNV. To elaborate the epidemiological characteristics of the WNV, surveillance of WNV infection in Kashgar Region, Xinjiang from 2013 to 2016 were carried out. Blood and CSF samples from surveillance human cases, blood of domestic chicken, cattle, sheep and mosquitoes in Kashgar Region were collected and detected. There were human 65 WNV Immunoglobulin M (IgM) antibody positive cases by ELISA screening, 6 confirmed WNV cases by the plaque reduction neutralization test (PRNT) screening. These cases occurred mainly concentrated in August to September of each year, and most of them were males. WNV-neutralizing antibodies were detected in both chickens and sheep, and the positive rates of neutralizing antibodies were 15.5% and 1.78%, respectively. A total of 15,637 mosquitoes were collected in 2013-2016, with Culex pipiens as the dominant mosquito species. Four and 1 WNV-positive mosquito pools were detected by RT-qPCR in 2013 and 2016 respectively. From these data, we can confirm that Jiashi County may be a natural epidemic foci of WNV disease, the trend highlights the routine virology surveillance in WNV surveillance cases, mosquitoes and avian should be maintained and enhanced to provide to prediction and early warning of outbreak an epidemic of WNV in China.
Project description:BACKGROUND:More information on brucellosis epidemiology in Bactrian camels is needed due to their growing economic and livelihood importance for herders and renewed efforts in Mongolia to eliminate brucellosis through mass vaccination of ruminants excluding camels. Brucellosis prevalence in camels increased over the past two decades. Random multi-stage cluster surveys were done in the Eastern provinces of Dornod and Sukhbaatar in 2013 and 2014 and in the Southern & Western provinces of Dornogobi, Umnogobi and Khovd in 2014 and 2015. A total of 1822 camels, 1155 cattle, and 3023 small ruminant sera were collected and tested with the Rose Bengal Test. In addition, 195 vaginal swabs and 250 milk samples for bacteriological culture were taken from livestock with history of abortion. RESULTS:The overall apparent seroprevalence in camels was 2.3% (95% confidence interval 1.6-3.3). The main risk factor for camel seropositivity was being in an Eastern province when compared to Southern & Western provinces (odds ratio 13.2, 95% CI 5.3-32.4). Camel seroprevalences were stable over the two consecutive survey years, despite introduction of ruminant vaccination: 5.7% (95% CI 3.1-10.2%) and 5.8% (3.3-10.1%) in Eastern provinces and 0.4% (0.2-1.2%) and 0.5% (0.1-2.0%) in Southern & Western provinces. We isolated Brucella abortus from camels and cattle. Camel seropositivity was associated to keeping cattle together with camels. Monitoring of vaccination campaigns showed that coverage in cattle was insufficient because animals could not be adequately restrained. CONCLUSIONS:The present study reveals that brucellosis is present with important seroprevalence in Mongolian camels and was endemic in Eastern provinces. Camel herd seropositivity was most closely associated to infection in cattle. Longer term monitoring is needed to assess whether camel seroprevalance decreases with ongoing vaccination in Mongolia. This should be coupled with further confirmation on Brucella spp. isolates. To date, only Brucella abortus was isolated, but camels are also susceptible to Brucella melitensis. Clear verbal and written information on disease prevention in livestock and household members is important, particularly for remote camel herders who had only moderate knowledge on brucellosis epidemiology and preventive measures.
Project description:Hepatitis E virus (HEV) is a causative agent of infectious hepatitis in animals and humans both in developing and developed countries. Here, we collected 500 sheep sera and 75 raw sheep liver samples from a slaughterhouse in the southern part of the Xinjiang region, China, along with 26 sera of butchers from the same slaughterhouse. All serum samples were tested for anti-HEV antibody by enzyme-linked immunosorbent assay. Both serum and liver samples were evaluated for the presence of HEV RNA by nested polymerase chain reaction targeting partial nucleotide sequences of open reading frame 2 (ORF2). The results indicate that sheep seroprevalence was 35.20 % (176/500) and that four of the 75 (5.3 %) sheep livers showed detectable amounts of HEV RNA. The seroprevalence of the butchers was 57.7 % (15/26). The four amplicons shared 97.8-100 % nucleotide sequence identity and had pairwise sequence identities of 81.6-85.3 %, 84.2-85.3 %, 82.1-85.3 % and 84.7-97.9 % with the corresponding regions of genotypes 1, 2, 3 and 4 of HEV, respectively. A phylogenetic tree was constructed based on alignments of an amplified 186-bp ORF2 sequence and corresponding reference strains. The analysis showed that the four sheep strains detected in our study formed a lineage within a genotype 4 cluster that contains hb-3, bjsw1, T1, swCH189 and swCH25, all of which belong to genotype 4, subtype 4d. The results indicated a high level of seroconversion in sheep and suggested that sheep liver may be a source of foodborne HEV infection in humans.