Ontology highlight
ABSTRACT:
SUBMITTER: Shi J
PROVIDER: S-EPMC5201242 | biostudies-literature | 2016 Dec
REPOSITORIES: biostudies-literature
Shi Jianxin J Park Ju-Hyun JH Duan Jubao J Berndt Sonja T ST Moy Winton W Yu Kai K Song Lei L Wheeler William W Hua Xing X Silverman Debra D Garcia-Closas Montserrat M Hsiung Chao Agnes CA Figueroa Jonine D JD Cortessis Victoria K VK Malats Núria N Karagas Margaret R MR Vineis Paolo P Chang I-Shou IS Lin Dongxin D Zhou Baosen B Seow Adeline A Matsuo Keitaro K Hong Yun-Chul YC Caporaso Neil E NE Wolpin Brian B Jacobs Eric E Petersen Gloria M GM Klein Alison P AP Li Donghui D Risch Harvey H Sanders Alan R AR Hsu Li L Schoen Robert E RE Brenner Hermann H Stolzenberg-Solomon Rachael R Gejman Pablo P Lan Qing Q Rothman Nathaniel N Amundadottir Laufey T LT Landi Maria Teresa MT Levinson Douglas F DF Chanock Stephen J SJ Chatterjee Nilanjan N
PLoS genetics 20161230 12
Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), a simple modelling technique that can be implemented using summary-level data from the discovery samples. We herein propose modifications to improve the performance of PRS. We introduce threshold-dependent winner's-curse adjustments for marginal association coefficients that are used to weight the s ...[more]