Ontology highlight
ABSTRACT: Background
The discovery of cis-regulatory modules in metazoan genomes is crucial for understanding the connection between genes and organism diversity. It is important to quantify how comparative genomics can improve computational detection of such modules.Results
We run the Stubb software on the entire D. melanogaster genome, to obtain predictions of modules involved in segmentation of the embryo. Stubb uses a probabilistic model to score sequences for clustering of transcription factor binding sites, and can exploit multiple species data within the same probabilistic framework. The predictions are evaluated using publicly available gene expression data for thousands of genes, after careful manual annotation. We demonstrate that the use of a second genome (D. pseudoobscura) for cross-species comparison significantly improves the prediction accuracy of Stubb, and is a more sensitive approach than intersecting the results of separate runs over the two genomes. The entire list of predictions is made available online.Conclusion
Evolutionary conservation of modules serves as a filter to improve their detection in silico. The future availability of additional fruitfly genomes therefore carries the prospect of highly specific genome-wide predictions using Stubb.
SUBMITTER: Sinha S
PROVIDER: S-EPMC521067 | biostudies-literature | 2004 Sep
REPOSITORIES: biostudies-literature
Sinha Saurabh S Schroeder Mark D MD Unnerstall Ulrich U Gaul Ulrike U Siggia Eric D ED
BMC bioinformatics 20040909
<h4>Background</h4>The discovery of cis-regulatory modules in metazoan genomes is crucial for understanding the connection between genes and organism diversity. It is important to quantify how comparative genomics can improve computational detection of such modules.<h4>Results</h4>We run the Stubb software on the entire D. melanogaster genome, to obtain predictions of modules involved in segmentation of the embryo. Stubb uses a probabilistic model to score sequences for clustering of transcripti ...[more]