Structure alignment-based classification of RNA-binding pockets reveals regional RNA recognition motifs on protein surfaces.
Ontology highlight
ABSTRACT: Many critical biological processes are strongly related to protein-RNA interactions. Revealing the protein structure motifs for RNA-binding will provide valuable information for deciphering protein-RNA recognition mechanisms and benefit complementary structural design in bioengineering. RNA-binding events often take place at pockets on protein surfaces. The structural classification of local binding pockets determines the major patterns of RNA recognition.In this work, we provide a novel framework for systematically identifying the structure motifs of protein-RNA binding sites in the form of pockets on regional protein surfaces via a structure alignment-based method. We first construct a similarity network of RNA-binding pockets based on a non-sequential-order structure alignment method for local structure alignment. By using network community decomposition, the RNA-binding pockets on protein surfaces are clustered into groups with structural similarity. With a multiple structure alignment strategy, the consensus RNA-binding pockets in each group are identified. The crucial recognition patterns, as well as the protein-RNA binding motifs, are then identified and analyzed.Large-scale RNA-binding pockets on protein surfaces are grouped by measuring their structural similarities. This similarity network-based framework provides a convenient method for modeling the structural relationships of functional pockets. The local structural patterns identified serve as structure motifs for the recognition with RNA on protein surfaces.
SUBMITTER: Liu ZP
PROVIDER: S-EPMC5225598 | biostudies-literature | 2017 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA