Unknown

Dataset Information

0

Epigenetic Modifiers Facilitate Induction and Pluripotency of Porcine iPSCs.


ABSTRACT: Inadequate silencing of exogenous genes represents a major obstacle to complete epigenetic reprogramming of porcine-induced pluripotent stem cells (piPSCs) by conventional pluripotency transcription factors (OSKM). We tested the hypothesis that epigenetic modification by active DNA or histone demethylation or by inhibition of histone deacetylase would enhance reprogramming and exogenous gene silencing in piPSCs. piPSCs induced by OSKM in combination with epigenetic factors, specifically Ten-Eleven Translocation (Tet1 or Tet3) or lysine (K)-specific demethylase 3A (Kdm3a), expressed higher levels of Rex1 and other genes representing naive state and exhibited more open chromatin status, compared with those of OSKM controls. Tet1 also improved differentiation capacity. Conversion with inhibitors of histone deacetylases (HDACi), NaB, TSA, or VPA, further increased Rex1 expression, while decreasing expression of exogenous genes. piPSCs induced by Tet1+OSKM followed by conversion with HDACi show high pluripotency. Together, epigenetic modifiers enhance generation of piPSCs and reduce their reliance on exogenous genes.

SUBMITTER: Mao J 

PROVIDER: S-EPMC5233437 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Epigenetic Modifiers Facilitate Induction and Pluripotency of Porcine iPSCs.

Mao Jian J   Zhang Qian Q   Deng Wei W   Wang Hua H   Liu Kai K   Fu Haifeng H   Zhao Qiang Q   Wang Xumin X   Liu Lin L  

Stem cell reports 20161229 1


Inadequate silencing of exogenous genes represents a major obstacle to complete epigenetic reprogramming of porcine-induced pluripotent stem cells (piPSCs) by conventional pluripotency transcription factors (OSKM). We tested the hypothesis that epigenetic modification by active DNA or histone demethylation or by inhibition of histone deacetylase would enhance reprogramming and exogenous gene silencing in piPSCs. piPSCs induced by OSKM in combination with epigenetic factors, specifically Ten-Elev  ...[more]

Similar Datasets

2017-01-06 | GSE87361 | GEO
| S-EPMC6128737 | biostudies-literature
| S-EPMC9570186 | biostudies-literature
| S-EPMC3384321 | biostudies-literature
| S-EPMC3516433 | biostudies-literature
| S-EPMC5560041 | biostudies-literature
| S-EPMC10720430 | biostudies-literature
| S-EPMC9737797 | biostudies-literature
2024-03-26 | PXD045347 | Pride
| S-EPMC9330643 | biostudies-literature