Reversible aggregation of HIV-1 Gag proteins mediated by nucleic acids.
Ontology highlight
ABSTRACT: HIV-1 Gag protein is the major structural protein for the assembly of virion particles. Although studies have been carried out using partially purified Gag proteins to investigate the mechanisms of viral particle assembly, the outcomes of an assembly reaction remain controversial. Here we have developed an improved procedure for purification of several untagged retroviral Gag proteins from E. coli to more than 95% purity and characterized Gag assembly in solution. We found that HIV-1 Gag proteins can undergo nucleic acid-dependent aggregation with several unexpected features: (1) they form spherical particles that are as large as microns in diameter; (2) the size of the aggregates vary with the molar ratio between nucleic acids and proteins, with the average size of these particles reaching maximal at a molar ratio of 1:2 between nucleic acids and proteins; and (3) these particles can be efficiently disassembled simply upon addition of excess nucleic acids into the solution, suggesting the presence of an ordered assembly. Single-stranded DNA oligos that are 10 nucleotides or shorter do not support the formation of these particles. Furthermore, the matrix domain of the Gag protein dramatically facilitates the formation of these aggregates. These studies uncover a previously uncharacterized pathway of HIV Gag assembly in vitro, and have implications for HIV-1 Gag assembly and pathogenesis in vivo.
SUBMITTER: Chen Z
PROVIDER: S-EPMC5237607 | biostudies-literature | 2017 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA