Nonsteroidal anti-inflammatory treatment prevents delayed effects of early life stress in rats.
Ontology highlight
ABSTRACT: Early developmental insults can cause dysfunction within parvalbumin (PVB)-containing interneurons in the prefrontal cortex. The neuropsychiatric disorders associated with such dysfunction might involve neuroinflammatory processes. Cyclooxygenase-2 (COX-2) is a key mediator of inflammation and is therefore a potential target for preventive treatment. Here, we investigated whether the developmental trajectories of PVB expression and COX-2 induction in the prelimbic region of the prefrontal cortex are altered after maternal separation stress in male rats.Male rat pups were separated from their mother and littermates for 4 hours/day between postnatal Days 2 and 20. Western blotting and immunohistochemistry were used to analyze PVB and COX-2 expression in the prefrontal cortex and hippocampus. A separate cohort of animals was treated with a COX-2 inhibitor during preadolescence and analyzed for PVB, COX-2, and working memory performance.We demonstrate that maternal separation causes a reduction of PVB and an increase in COX-2 expression in the prefrontal cortex in adolescence, with concurrent working memory deficits. Parvalbumin was not affected earlier in development. Prophylactic COX-2 inhibition preadolescence prevents PVB loss and improves working memory deficits induced by maternal separation.These data are the first to show a preventive pharmacological intervention for the delayed effects of early life stress on prefrontal cortex interneurons and working memory. Our results suggest a possible mechanism for the relationship between early life stress and interneuron dysfunction in adolescence.
SUBMITTER: Brenhouse HC
PROVIDER: S-EPMC5237809 | biostudies-literature | 2011 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA