Unknown

Dataset Information

0

Inhibition of endoplasmic reticulum (ER) stress sensors sensitizes cancer stem-like cells to ER stress-mediated apoptosis.


ABSTRACT: Although cancer stem cells (CSC) have been implicated in the development of resistance to anti-cancer therapy including chemotherapy, the mechanisms underlying chemo-resistance by CSC have not yet been elucidated. We herein isolated sphere-forming (cancer stem-like) cells from the cervical cancer cell line, SiHa, and examined the unfolded protein reaction (UPR) to chemotherapeutic-induced endoplasmic reticulum (ER) stress. We revealed that tunicamycin-induced ER stress-mediated apoptosis occurred in monolayer, but not sphere-forming cells. Biochemical assays demonstrated that sphere-forming cells were shifted to pro-survival signaling through the inactivation of IRE1 (XBP-1 splicing) and activation of PERK (elF2? phosphorylation) branches under tunicamycin-induced ER stress conditions. The proportion of apoptotic cells among sphere-forming cells was markedly increased by the tunicamycin+PERK inhibitor (PERKi) treatment, indicating that PERKi sensitized sphere-forming cells to tunicamycin-induced apoptosis. Cisplatin is also known to induce ER stress-mediated apoptosis. A low concentration of cisplatin failed to shift sphere-forming cells to apoptosis, although IRE1 branch, but not PERK, was activated. ER stress-mediated apoptosis occurred in sphere-forming cells by the cisplatin+IRE1? inhibitor (IRE1i) treatment. IRE1i, synergistic with cisplatin, up-regulated elF2? phosphorylation, and this was followed by the induction of CHOP in sphere-forming cells. The results of the present study demonstrated that the inhibition of ER stress sensors, combined with ER stress-inducible chemotherapy, shifted cancer stem-like cells to ER stress-mediated apoptosis.

SUBMITTER: Fujimoto A 

PROVIDER: S-EPMC5239519 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications


Although cancer stem cells (CSC) have been implicated in the development of resistance to anti-cancer therapy including chemotherapy, the mechanisms underlying chemo-resistance by CSC have not yet been elucidated. We herein isolated sphere-forming (cancer stem-like) cells from the cervical cancer cell line, SiHa, and examined the unfolded protein reaction (UPR) to chemotherapeutic-induced endoplasmic reticulum (ER) stress. We revealed that tunicamycin-induced ER stress-mediated apoptosis occurre  ...[more]

Similar Datasets

| S-EPMC7611309 | biostudies-literature
| S-EPMC4399746 | biostudies-literature
| S-EPMC6769313 | biostudies-literature
2019-12-01 | GSE59164 | GEO
| S-EPMC3382156 | biostudies-literature
| S-EPMC7189383 | biostudies-literature
| S-EPMC5876643 | biostudies-literature
| S-EPMC8125791 | biostudies-literature
| S-EPMC6475721 | biostudies-literature
| S-EPMC3698985 | biostudies-literature