Decreased Functional Connectivity of Insular Cortex in Drug Naive First Episode Schizophrenia: In Relation to Symptom Severity.
Ontology highlight
ABSTRACT: This study was to examine the insular cortical functional connectivity in drug naïve patients with first episode schizophrenia and to explore the relationship between the connectivity and the severity of clinical symptoms.Thirty-seven drug naïve patients with schizophrenia and 25 healthy controls were enrolled in this study. A seed-based approach was used to analyze the resting-state functional imaging data. Insular cortical connectivity maps were bilaterally extracted for group comparison and validated by voxel-based morphometry (VBM) analysis. Clinical symptoms were measured using the Positive and Negative Syndrome Scale (PANSS).There were significant reductions in the right insular cortical connectivity with the Heschl's gyrus, anterior cingulate cortex (ACC), and caudate (p's<0.001) in the patient group compared with the healthy control (HC) group. Reduced right insular cortical connectivity with the Heschl's gyrus was further confirmed in the VBM analysis (FDR corrected p<0.05). Within the patient group, there was a significant positive relationship between the right insula-Heschl's connectivity and PANSS general psychopathology scores (r = 0.384, p = 0.019).Reduced insula-Heschl's functional connectivity is present in drug naïve patients with first episode schizophrenia, which might be related to the manifestation of clinical symptoms.
<h4>Background</h4>This study was to examine the insular cortical functional connectivity in drug naïve patients with first episode schizophrenia and to explore the relationship between the connectivity and the severity of clinical symptoms.<h4>Methods</h4>Thirty-seven drug naïve patients with schizophrenia and 25 healthy controls were enrolled in this study. A seed-based approach was used to analyze the resting-state functional imaging data. Insular cortical connectivity maps were bilaterally e ...[more]
Project description:ObjectiveThe insula consists of functionally diverse subdivisions, and each division plays different roles in schizophrenia neuropathology. The current study aimed to investigate the abnormal patterns of dynamic functional connectivity (dFC) of insular subdivisions in schizophrenia and the effect of antipsychotics on these connections.MethodsLongitudinal study of the dFC of insular subdivisions was conducted in 42 treatment-naive first-episode patients with schizophrenia at baseline and after 8 weeks of risperidone treatment based on resting-state functional magnetic resonance image (fMRI).ResultsAt baseline, patients showed decreased dFC variance (less variable) between the insular subdivisions and the precuneus, supplementary motor area and temporal cortex, as well as increased dFC variance (more variable) between the insular subdivisions and parietal cortex, compared with healthy controls. After treatment, the dFC variance of the abnormal connections were normalized, which was accompanied by a significant improvement in positive symptoms.ConclusionsOur findings highlighted the abnormal patterns of fluctuating connectivity of insular subdivision circuits in schizophrenia and suggested that these abnormalities may be modified after antipsychotic treatment.
Project description:The disconnection hypothesis of schizophrenia has been extensively tested in adults. Recent studies have reported the presence of brain disconnection in younger patients, adding evidence to support the neurodevelopmental hypothesis of schizophrenia. Because of drug confounds in chronic and medicated patients, it has been extremely challenging for researchers to directly investigate abnormalities in the development of connectivity and their role in the pathophysiology of schizophrenia. The present study aimed to examine functional homotopy - a measure of interhemispheric connection - and its relevance to clinical symptoms in first-episode drug-naïve early-onset schizophrenia (EOS) patients.Resting-state functional magnetic resonance imaging was performed in 26 first-episode drug-naïve EOS patients (age: 14.5 ± 1.94, 13 males) and 25 matched typically developing controls (TDCs) (age: 14.4 ± 2.97, 13 males). We were mainly concerned with the functional connectivity between any pair of symmetric interhemispheric voxels (i.e., functional homotopy) measured by voxel-mirrored homotopic connectivity (VMHC).Early-onset schizophrenia patients exhibited both global and regional VMHC reductions in comparison with TDCs. Reduced VMHC values were observed within the superior temporal cortex and postcentral gyrus. These interhemispheric synchronization deficits were negatively correlated with negative symptom of the Positive and Negative Syndrome Scale. Moreover, regions of interest analyses based on left and right clusters of temporal cortex and postcentral gyrus revealed abnormal heterotopic connectivity in EOS patients.Our findings provide novel neurodevelopmental evidence for the disconnection hypothesis of schizophrenia and suggest that these alterations occur early in the course of the disease and are independent of medication status.
Project description:Background:The investigation of large-scale intrinsic connectivity networks in antipsychotic-naïve first-episode schizophrenia increases our understanding of system-level cerebral dysfunction in schizophrenia while enabling control of confounding effects of medication and disease progression. Reports on functional connectivity in antipsychotic-naïve patients have been mixed and the relation between network alterations, psychopathology and cognition is unclear. Methods:A total number of 47 patients with first-episode schizophrenia who had never received antipsychotic medication and 47 healthy controls were scanned with functional magnetic resonance imaging under resting conditions. Main outcome measures were differences in functional connectivity between groups and the relationship between network alterations, psychopathology and cognition. Results:Altered connectivity was found between right central executive network (CEN) and right ventral attention network (VAN) (patients > controls, P = .001), left CEN and left VAN (P = .002), and between posterior default mode network and auditory network (P = .006). Association between network connectivity and clinical characteristics was found as interactions between the effects of group and sustained attention (P = .005) and between group and processing speed (P = .007) on the connectivity between right CEN and right VAN. Conclusions:Our findings suggest that the early phase of schizophrenia is characterized by increased connectivity between fronto-parietal networks suggested to be involved in the control of cognitive and sensory functions. Moreover, the present study suggests that the problem of not disengaging the VAN leads to difficulties with attention and possibly subjective awareness.
Project description:Analyzing the schizophrenia connectome can identify illness-related alterations in connectivity across the brain. An important question that remains unanswered is whether connectivity alterations are already evident at the onset of illness, before treatment with antipsychotic medication and possible influences of neuroprogressive or secondary alterations related to chronic illness duration. In the present study, diffusion tensor imaging and deterministic fiber tractography were performed with 137 antipsychotic-naive first-episode schizophrenia patients and 113 matched healthy controls. Using graph theoretic analysis, groups were compared in global and regional measurements and modularity of white matter connectivity. Compared with controls, the patients showed significantly decreased total connection strength. Furthermore, patients demonstrated significantly decreased connections within and between brain modules. Several local brain regions within association cortex exhibited reduced nodal centralities and abnormal participant coefficient or intra-module degree, some of which were correlated with illness duration and overall functional disability. In never-treated schizophrenia patients, networks showed a less effective organizational pattern of white matter pathways. White matter disconnectivity occurred not only within but also between multiple modules, shedding light on the deficits of anatomical network organization early in the course of schizophrenia.
Project description:BackgroundSchizophrenia (SZ) is associated with the highest disability rate among serious mental disorders. Excited symptoms are the core symptoms of SZ, which appear in the early stage, followed by other stages of the disease subsequently. These symptoms are destructive and more prone to violent attacks, posing a serious economic burden to the society. Abnormal spontaneous activity in the orbitofrontal cortex had been reported to be associated with excited symptoms in patients with SZ. However, whether the abnormality appears in first-episode drug-naïve patients with SZ has still remained elusive.MethodsA total of 56 first-episode drug-naïve patients with SZ and 27 healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI) and positive and negative syndrome scale (PANSS). First, differences in fractional amplitude of low-frequency fluctuations (fALFF) between first-episode drug-naïve patients with SZ and healthy controls were examined to identify cerebral regions exhibiting abnormal local spontaneous activity. Based on the fALFF results, the resting-state functional connectivity analysis was performed to determine changes in cerebral regions exhibiting abnormal local spontaneous activity. Finally, the correlation between abnormal functional connectivity and exciting symptoms was analyzed.ResultsCompared with the healthy controls, first-episode drug-naïve patients with SZ showed a significant decrease in intrinsic activity in the bilateral precentral gyrus, bilateral postcentral gyrus, and the left orbitofrontal cortex. In addition, first-episode drug-naïve patients with SZ had significantly reduced functional connectivity values between the left orbitofrontal cortex and several cerebral regions, which were mainly distributed in the bilateral postcentral gyrus, the right middle frontal gyrus, bilateral paracentral lobules, the left precentral gyrus, and the right median cingulate. Further analyses showed that the functional connectivity between the left orbitofrontal cortex and the left postcentral gyrus, as well as bilateral paracentral lobules, was negatively correlated with excited symptoms in first-episode drug-naïve patients with SZ.ConclusionOur results indicated the important role of the left orbitofrontal cortex in first-episode drug-naïve patients with SZ and suggested that the abnormal spontaneous activity of the orbitofrontal cortex may be valuable to predict the occurrence of excited symptoms. These results may provide a new direction to explore the excited symptoms of SZ.
Project description:Generalized anxiety disorder (GAD) is characterized by excessive and uncontrollable worry about everyday life. Prior neuroimaging studies have demonstrated that GAD is associated with disruptions in specific brain regions; however, little is known about the global functional connectivity maps in adolescents with GAD. Here, first-episode, medication-naive, adolescent GAD patients (N = 36) and healthy controls (N = 28) (HCs) underwent resting-state functional MRI (R-fMRI) and completed a package of questionnaires to assess clinical symptoms. Functional connectivity strength and seed-based functional connectivity were employed to investigate the functional connectivity architecture. GAD patients showed reduced functional connectivity strength in right supramarginal gyrus (SMG) and right superior parietal gyrus (SPG) compared with HCs. Further seed-based functional connectivity analysis revealed that GAD patients displayed decreased functional connectivity between right SMG and left fusiform gyrus, inferior temporal gyrus, parahippocampal gyrus, bilateral precuneus and cuneus, and between right SPG and bilateral supplementary motor area and middle cingulate gyrus, as well as between the SMG-based network and the SPG-based network. Moreover, the disrupted intra-network connectivity (i.e., the SMG-based network and the SPG-based network) and inter-network connectivity between the SMG-based network and the SPG-based network accounted for 25.5% variance of the State and Trait Anxiety Inventory (STAI) and 39.5% variance of the trait subscale of STAI. Our findings highlight the abnormal functional architecture in the SMG-based network and the SPG-based network in GAD, providing novel insights into the pathological mechanisms of this disorder.
Project description:Anatomical deficits and resting-state functional connectivity (FC) alterations in prefrontal-thalamic-cerebellar circuit have been implicated in the neurobiology of schizophrenia. However, the effect of structural deficits in schizophrenia on causal connectivity of this circuit remains unclear. This study was conducted to examine the causal connectivity biased by structural deficits in first-episode, drug-naive schizophrenia patients. Structural and resting-state functional magnetic resonance imaging (fMRI) data were obtained from 49 first-episode, drug-naive schizophrenia patients and 50 healthy controls. Data were analyzed by voxel-based morphometry and Granger causality analysis. The causal connectivity of the integrated prefrontal-thalamic (limbic)-cerebellar (sensorimotor) circuit was partly affected by structural deficits in first-episode, drug-naive schizophrenia as follows: (1) unilateral prefrontal-sensorimotor connectivity abnormalities (increased driving effect from the left medial prefrontal cortex [MPFC] to the sensorimotor regions); (2) bilateral limbic-sensorimotor connectivity abnormalities (increased driving effect from the right anterior cingulate cortex [ACC] to the sensorimotor regions and decreased feedback from the sensorimotor regions to the right ACC); and (3) bilateral increased and decreased causal connectivities among the sensorimotor regions. Some correlations between the gray matter volume of the seeds, along with their causal effects and clinical variables (duration of untreated psychosis and symptom severity), were also observed in the patients. The findings indicated the partial effects of structural deficits in first-episode, drug-naive schizophrenia on the prefrontal-thalamic (limbic)-cerebellar (sensorimotor) circuit. Schizophrenia may reinforce the driving connectivities from the left MPFC or right ACC to the sensorimotor regions and may disrupt bilateral causal connectivities among the sensorimotor regions.
Project description:Abnormal brain network connectivity is strongly implicated in the pathogenesis of schizophrenia. The striatum, consisting of the caudate and putamen, is the major treatment target for antipsychotics, the primary treatments for schizophrenia; however, there are few studies on the functional connectivity (FC) of striatum in drug-naive early-onset schizophrenia (EOS) patients. We examined the FC values of the caudate nucleus and putamen with whole brain by resting-state functional magnetic resonance imaging (RS-fMRI) and the associations with indices of clinical severity. Patients demonstrated abnormal FC between subregions of the putamen and both the visual network (left middle occipital gyrus) and default mode network (bilateral anterior cingulate, left superior frontal, and right middle frontal gyri). Furthermore, FC between dorsorostral putamen and left superior frontal gyrus correlated with both positive symptom subscore and total score on the Positive and Negative Syndrome Scale (PANSS). These findings demonstrate abnormal FC between the striatum and other brain areas even in the early stages of schizophrenia, supporting neurodevelopmental disruption in disease etiology and expression.
Project description:BackgroundOur previous study has shown the cingulate cortex abnormalities in first-episode drug naïve (FEDN) schizophrenia patients with comorbid depressive symptoms. However, it remains largely unknown whether antipsychotics may induce morphometric change in cingulate cortex and its relationship with depressive symptoms. The purpose of this study was to further clarify the important role of cingulate cortex in the treatment on depressive symptoms in FEDN schizophrenia patients.MethodIn this study, 42 FEDN schizophrenia patients were assigned into depressed patients group (DP, n = 24) and non-depressed patients group (NDP, n = 18) measured by the 24-item Hamilton Depression Rating Scale (HAMD). Clinical assessments and anatomical images were obtained from all patients before and after 12-week treatment with risperidone.ResultsAlthough risperidone alleviated psychotic symptoms in all patients, depressive symptoms were decreased only in DP. Significant group by time interaction effects were found in the right rostral anterior cingulate cortex (rACC) and other subcortical regions in the left hemisphere. After risperidone treatment, the right rACC were increased in DP. Further, the increasing volume of right rACC was negatively associated with improvement in depressive symptoms.ConclusionThese findings suggested that the abnormality of the rACC is the typical characteristics in schizophrenia with depressive symptoms. It's likely key region contributing to the neural mechanisms underlying the effects of risperidone treatment on depressive symptoms in schizophrenia.
Project description:Background and objectiveAs a key feature of schizophrenia, auditory verbal hallucination (AVH) is causing concern. Altered dynamic functional connectivity (dFC) patterns involving in auditory related regions were rarely reported in schizophrenia patients with AVH. The goal of this research was to find out the dFC abnormalities of auditory related regions in first-episode, drug-naïve schizophrenia patients with and without AVH using resting state functional magnetic resonance imaging (rs-fMRI).MethodsA total of 107 schizophrenia patients with AVH, 85 schizophrenia patients without AVH (NAVH) underwent rs-fMRI examinations, and 104 healthy controls (HC) were matched. Seed-based dFC of the primary auditory cortex (Heschl's gyrus, HES), auditory association cortex (AAC, including Brodmann's areas 22 and 42), and medial geniculate nucleus (MGN) was conducted to build a whole-brain dFC diagram, then inter group comparison and correlation analysis were performed.ResultsIn comparison to the NAVH and HC groups, the AVH group showed increased dFC from left ACC to the right middle temporal gyrus and right middle occipital gyrus, decreased dFC from left HES to the left superior occipital gyrus, left cuneus gyrus, left precuneus gyrus, decreased dFC from right HES to the posterior cingulate gyrus, and decreased dFC from left MGN to the bilateral calcarine gyrus, bilateral cuneus gyrus, bilateral lingual gyrus. The Auditory Hallucination Rating Scale (AHRS) was significantly positively correlated with the dFC values of cluster 1 (bilateral calcarine gyrus, cuneus gyrus, lingual gyrus, superior occipital gyrus, precuneus gyrus, and posterior cingulate gyrus) using left AAC seed, cluster 2 (right middle temporal gyrus and right middle occipital gyrus) using left AAC seed, cluster 1 (bilateral calcarine gyrus, cuneus gyrus, lingual gyrus, superior occipital gyrus, precuneus gyrus and posterior cingulate gyrus) using right AAC seed and cluster 2 (posterior cingulate gyrus) using right HES seed in the AVH group. In both AVH and NAVH groups, a significantly negative correlation is also found between the dFC values of cluster 2 (posterior cingulate gyrus) using the right HES seed and the PANSS negative sub-scores.ConclusionsThe present findings demonstrate that schizophrenia patients with AVH showed multiple abnormal dFC regions using auditory related cortex and nucleus as seeds, particularly involving the occipital lobe, default mode network (DMN), and middle temporal lobe, implying that the different dFC patterns of auditory related areas could provide a neurological mechanism of AVH in schizophrenia.