Effects of PCSK9 Inhibition With Alirocumab on Lipoprotein Metabolism in Healthy Humans.
Ontology highlight
ABSTRACT: Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 has any effects on very low-density lipoprotein or intermediate-density lipoprotein (IDL) metabolism. Inhibition of PCSK9 also results in reductions of plasma lipoprotein (a) levels. The regulation of plasma Lp(a) levels, including the role of LDL receptors in the clearance of Lp(a), is poorly defined, and no mechanistic studies of the Lp(a) lowering by alirocumab in humans have been published to date.Eighteen (10 F, 8 mol/L) participants completed a placebo-controlled, 2-period study. They received 2 doses of placebo, 2 weeks apart, followed by 5 doses of 150 mg of alirocumab, 2 weeks apart. At the end of each period, fractional clearance rates (FCRs) and production rates (PRs) of apoB and apo(a) were determined. In 10 participants, postprandial triglycerides and apoB48 levels were measured.Alirocumab reduced ultracentrifugally isolated LDL-C by 55.1%, LDL-apoB by 56.3%, and plasma Lp(a) by 18.7%. The fall in LDL-apoB was caused by an 80.4% increase in LDL-apoB FCR and a 23.9% reduction in LDL-apoB PR. The latter was due to a 46.1% increase in IDL-apoB FCR coupled with a 27.2% decrease in conversion of IDL to LDL. The FCR of apo(a) tended to increase (24.6%) without any change in apo(a) PR. Alirocumab had no effects on FCRs or PRs of very low-density lipoproteins-apoB and very low-density lipoproteins triglycerides or on postprandial plasma triglycerides or apoB48 concentrations.Alirocumab decreased LDL-C and LDL-apoB by increasing IDL- and LDL-apoB FCRs and decreasing LDL-apoB PR. These results are consistent with increases in LDL receptors available to clear IDL and LDL from blood during PCSK9 inhibition. The increase in apo(a) FCR during alirocumab treatment suggests that increased LDL receptors may also play a role in the reduction of plasma Lp(a).URL: http://www.clinicaltrials.gov. Unique identifier: NCT01959971.
<h4>Background</h4>Alirocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowers plasma low-density lipoprotein (LDL) cholesterol and apolipoprotein B100 (apoB). Although studies in mice and cells have identified increased hepatic LDL receptors as the basis for LDL lowering by PCSK9 inhibitors, there have been no human studies characterizing the effects of PCSK9 inhibitors on lipoprotein metabolism. In particular, it is not known whether inhibition of PCSK9 h ...[more]
Project description:In patients with discordance between low-density lipoprotein (LDL) cholesterol and LDL particle (LDL-P) concentrations, cardiovascular risk more closely correlates with LDL-P.We investigated the effect of alirocumab, a fully human monoclonal antibody to proprotein convertase subtilisin/kexin type 9, on lipoprotein particle concentration and size in hypercholesterolemic patients, using nuclear magnetic resonance spectroscopy. Plasma samples were collected from patients receiving alirocumab 150 mg every 2 weeks (n=26) or placebo (n=31) during a phase II, double-blind, placebo-controlled trial in patients (LDL cholesterol ?100 mg/dL) on a stable atorvastatin dose. In this post hoc analysis, percentage change in concentrations of LDL-P, very-low-density lipoprotein particles, and high-density lipoprotein particles from baseline to week 12 was determined by nuclear magnetic resonance. Alirocumab significantly reduced mean concentrations of total LDL-P (-63.3% versus -1.0% with placebo) and large (-71.3% versus -21.8%) and small (-54.0% versus +17.8%) LDL-P subfractions and total very-low-density lipoprotein particle concentrations (-36.4% versus +33.4%; all P<0.01). Total high-density lipoprotein particles increased with alirocumab (+11.2% versus +1.4% with placebo; P<0.01). There were greater increases in large (44.6%) versus medium (17.7%) or small high-density lipoprotein particles (2.8%) with alirocumab. LDL-P size remained relatively unchanged in both groups; however, very-low-density and high-density lipoprotein particle sizes increased to a significantly greater extent with alirocumab.Alirocumab significantly reduced LDL-C and LDL-P concentrations in hypercholesterolemic patients receiving stable atorvastatin therapy. These findings may be of particular relevance to patients with discordant LDL-C and LDL-P concentrations.URL: https://clinicaltrials.gov. Unique identifier: NCT01288443.
Project description:Lipoprotein(a) (Lp[a]) is the most common genetically inherited risk factor for cardiovascular disease. Many aspects of Lp(a) metabolism remain unknown. We assessed the uptake of fluorescent Lp(a) in primary human lymphocytes as well as Lp(a) hepatic capture in a mouse model in which endogenous hepatocytes have been ablated and replaced with human ones. Modulation of LDLR expression with the PCSK9 inhibitor alirocumab did not alter the cellular or the hepatic uptake of Lp(a), demonstrating that the LDL receptor is not a major route for Lp(a) plasma clearance. These results have clinical implications because they underpin why statins are not efficient at reducing Lp(a).
Project description:To elucidate how the proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitor alirocumab modulates lipoprotein(a) [Lp(a)] plasma levels, the authors performed a series of Lp(a) uptake studies in primary human hepatocytes and dermal fibroblasts and measured Lp(a) secretion from human hepatocytes. They found that Lp(a) cellular uptake occurred in a low-density lipoprotein receptor-independent manner. Neither PCSK9 nor alirocumab altered Lp(a) internalization. By contrast, the secretion of apolipoprotein (a) from human hepatocytes was sharply increased by PCSK9, an effect that was reversed by alirocumab. They propose that PCSK9 does not significantly modulate Lp(a) catabolism, but rather enhances the secretion of Lp(a) from liver cells.
Project description:Background and aims: The aim of this study was to investigate the influence of a single injection of Evolocumab on the dynamics of Lp(a), fractions of apoB100-containing lipoproteins, PCSK9, and their complexes in healthy individuals with elevated Lp(a) levels. Methods: This open-label, 4-week clinical study involved 10 statin-naive volunteers with Lp(a) >30 mg/dL, LDL-C < 4.9 mmol/L, and a moderate risk of cardiovascular events. The concentrations of Lp(a), lipids, PCSK9, circulating immune complexes (CIC), and plasma complexes of PCSK9 with apoB100-containing lipoproteins (Lp(a)-PCSK9 and LDL-PCSK9) were measured before and each week after Evolocumab (MABs) administration. Results: After a single dose injection of 140 mg of MABs, the median concentration of PCSK9 in serum increased from 496 to 3944 ng/mL; however, the entire pool of circulating PCSK9 remained bound with MABs for 2-3 weeks. LDL-C level decreased significantly from 3.36 mmol/L to 2.27 mmol/L during the first two weeks after the injection. Lp(a) concentrations demonstrated multidirectional changes in different patients with the maximal decrease on the second week. There were no positive correlations between the changes in levels of Lp(a), LDL-C, and TC. The change in the amount of circulating complex of PCSK9-Lp(a) was significantly less than of PCSK9-apoB100 (-5% and -47% after 1 week, respectively). Conclusions: A single administration of monoclonal antibodies against PCSK9 (Evolocumab) in healthy individuals with hyperlipoproteinemia(a) resulted in a decrease of Lp(a) of 14%, a 5% decrease in PCSK9-Lp(a), a 36% reduction of LDL-C, a 47% decrease in PCSK9-apoB100 and a tenfold increase in total serum PCSK9 concentration.
Project description:The metabolism of hepatic- and intestinally derived lipoproteins is regulated in a complex fashion by nutrients, hormones, and neurologic and other factors. Recent studies in animal models suggest an important role for glucagon acting via the glucagon receptor in regulating hepatic triglyceride (TG) secretion. Here we examined the direct effects of glucagon on regulation of hepatic and intestinal lipoprotein metabolism in humans.Eight healthy men underwent two studies each, in random order, 4-6 weeks apart in which de novo lipogenesis, kinetics of larger VLDL1 TG, and kinetics of VLDL1 and smaller VLDL2 apolipoprotein (apo)B100 and B48 were studied using established stable isotope enrichment methods. Subjects were studied in the constant fed state under conditions of a pancreatic clamp (with infusion of somatostatin, insulin, and growth hormone) at either basal glucagon (BG study, 64.5 ± 2.1 pg/mL) or hyperglucagonemia (high glucagon [HG] study, 183.2 ± 5.1 pg/mL).There were no significant differences in plasma concentration of VLDL1 or VLDL2 TG, apoB100 or apoB48 between BG and HG studies. There was, however, lower (P < 0.05) VLDL1 apoB100 fractional catabolic rate (-39%) and production rate (-30%) in HG versus BG, but no difference in de novo lipogenesis or TG turnover, and glucagon had no effect on intestinal (B48-containing) lipoprotein metabolism.Glucagon acutely regulates hepatic but not intestinal lipoprotein particle metabolism in humans both by decreasing hepatic lipoprotein particle production as well as by inhibiting particle clearance, with no net effect on particle concentration.
Project description:Background Beyond their potent LDL (low-density lipoprotein) cholesterol ( LDL -C)-lowering efficacy (50-60%), PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors also reduce Lp(a) (lipoprotein[a]) levels by 25% to 30%, suggesting a 2:1 response ratio. We aimed to characterize the relationship between LDL -C and Lp(a) lowering by evolocumab, a PCSK 9 inhibitor, in a large clinical trial population and to determine the prevalence of concordant/discordant LDL -C and Lp(a) responses to PCSK 9 inhibition. Methods and Results Data were analyzed from 4 randomized, 12-week, multicenter, phase 3 evolocumab trials. Patients with familial hypercholesterolemia, nonfamilial hypercholesterolemia, or statin intolerance participated in the trials. The main measure was the degree of concordance or discordance of LDL -C and Lp(a) in response to PCSK 9 inhibition; concordant response was defined as LDL -C reduction >35% and Lp(a) reduction >10%. The study cohort comprised 895 patients (438 female; median age: 59.0 years [interquartile range: 51-66 years]). Baseline mean level of LDL -C was 133.6 mg/dL (SE: 1.7) and median Lp(a) level was 46.4 mg/dL (interquartile range: 18.4-82.4 mg/dL). A discordant response was observed in 165 (19.7%) patients. With these cutoffs, the prevalence of discordance was higher when considering baseline Lp(a) concentrations >30 mg/dL (26.5%) or >50 mg/dL (28.6%). Conclusions We demonstrate high prevalence of discordance in LDL -C and Lp(a) reduction in response to evolocumab, particularly when considering higher baseline Lp(a) concentrations, indicating the possibility of alternative pathways beyond LDLR ( LDL receptor)-mediated clearance involved in Lp(a) reduction by evolocumab. Clinical Trial Registration URL : http://www.clinicaltrials.gov . Unique identifiers: NCT 01763827, NCT 01763866, NCT 01763905, NCT 01763918.
Project description:Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation. The transmembrane 6 superfamily member 2 (TM6SF2) E167K genetic variant associates with NAFLD and with reduced plasma triglyceride levels in humans. However, the molecular mechanisms underlying these associations remain unclear. We hypothesized that TM6SF2 E167K affects hepatic very low-density lipoprotein (VLDL) secretion and studied the kinetics of apolipoprotein B100 (apoB100) and triglyceride metabolism in VLDL in homozygous subjects. In 10 homozygote TM6SF2 E167K carriers and 10 matched controls, we employed stable-isotope tracer and compartmental modeling techniques to determine apoB100 and triglyceride kinetics in the 2 major VLDL subfractions: large triglyceride-rich VLDL1 and smaller, less triglyceride-rich VLDL2. VLDL1-apoB100 production was markedly reduced in homozygote TM6SF2 E167K carriers compared with controls. Likewise, VLDL1-triglyceride production was 35% lower in the TM6SF2 E167K carriers. In contrast, the direct production rates for VLDL2-apoB100 and triglyceride were not different between carriers and controls. In conclusion, the TM6SF2 E167K genetic variant was linked to a specific reduction in hepatic secretion of large triglyceride-rich VLDL1. The impaired secretion of VLDL1 explains the reduced plasma triglyceride concentration and provides a basis for understanding the lower risk of cardiovascular disease associated with the TM6SF2 E167K genetic variant.
Project description:Elevated lipoprotein (a) [Lp(a)] levels increase the risk for CVD. Novel treatments that decrease LDL cholesterol (LDL-C) have also shown promise for reducing Lp(a) levels. Mipomersen, an antisense oligonucleotide that inhibits apoB synthesis, is approved for the treatment of homozygous familial hypercholesterolemia. It decreases plasma levels of LDL-C by 25% to 39% and lowers levels of Lp(a) by 21% to 39%. We examined the mechanisms for Lp(a) lowering during mipomersen treatment. We enrolled 14 healthy volunteers who received weekly placebo injections for 3 weeks followed by weekly injections of mipomersen for 7 weeks. Stable isotope kinetic studies were performed using deuterated leucine at the end of the placebo and mipomersen treatment periods. The fractional catabolic rate (FCR) of Lp(a) was determined from the enrichment of a leucine-containing peptide specific to apo(a) by LC/MS. The production rate (PR) of Lp(a) was calculated from the product of Lp(a) FCR and Lp(a) concentration (converted to pool size). In a diverse population, mipomersen reduced plasma Lp(a) levels by 21%. In the overall study group, mipomersen treatment resulted in a 27% increase in the FCR of Lp(a) with no significant change in PR. However, there was heterogeneity in the response to mipomersen therapy, and changes in both FCRs and PRs affected the degree of change in Lp(a) concentrations. Mipomersen treatment decreases Lp(a) plasma levels mainly by increasing the FCR of Lp(a), although changes in Lp(a) PR were significant predictors of reductions in Lp(a) levels in some subjects.
Project description:RationaleLipoprotein(a) [Lp(a)] is a highly atherogenic low-density lipoprotein-like particle characterized by the presence of apoprotein(a) [apo(a)] bound to apolipoprotein B. Proprotein convertase subtilisin/kexin type 9 (PCSK9) selectively binds low-density lipoprotein; we hypothesized that it can also be associated with Lp(a) in plasma.ObjectiveCharacterize the association of PCSK9 and Lp(a) in 39 subjects with high Lp(a) levels (range 39-320 mg/dL) and in transgenic mice expressing either human apo(a) only or human Lp(a) (via coexpression of human apo(a) and human apolipoprotein B).Methods and resultsWe show that PCSK9 is physically associated with Lp(a) in vivo using 3 different approaches: (1) analysis of Lp(a) fractions isolated by ultracentrifugation; (2) immunoprecipitation of plasma using antibodies to PCSK9 and immunodetection of apo(a); (3) ELISA quantification of Lp(a)-associated PCSK9. Plasma PCSK9 levels correlated with Lp(a) levels, but not with the number of kringle IV-2 repeats. PCSK9 did not bind to apo(a) only, and the association of PCSK9 with Lp(a) was not affected by the loss of the apo(a) region responsible for binding oxidized phospholipids. Preferential association of PCSK9 with Lp(a) versus low-density lipoprotein (1.7-fold increase) was seen in subjects with high Lp(a) and normal low-density lipoprotein. Finally, Lp(a)-associated PCSK9 levels directly correlated with plasma Lp(a) levels but not with total plasma PCSK9 levels.ConclusionsOur results show, for the first time, that plasma PCSK9 is found in association with Lp(a) particles in humans with high Lp(a) levels and in mice carrying human Lp(a). Lp(a)-bound PCSK9 may be pursued as a biomarker for cardiovascular risk.