Unknown

Dataset Information

0

Fermentation of glycerol by Anaerobium acetethylicum and its potential use in biofuel production.


ABSTRACT: Growth of biodiesel industries resulted in increased coproduction of crude glycerol which is therefore becoming a waste product instead of a valuable 'coproduct'. Glycerol can be used for the production of valuable chemicals, e.g. biofuels, to reduce glycerol waste disposal. In this study, a novel bacterial strain is described which converts glycerol mainly to ethanol and hydrogen with very little amounts of acetate, formate and 1,2-propanediol as coproducts. The bacterium offers certain advantages over previously studied glycerol-fermenting microorganisms. Anaerobium acetethylicum during growth with glycerol produces very little side products and grows in the presence of maximum glycerol concentrations up to 1500 mM and in the complete absence of complex organic supplements such as yeast extract or tryptone. The highest observed growth rate of 0.116 h-1 is similar to that of other glycerol degraders, and the maximum concentration of ethanol that can be tolerated was found to be about 60 mM (2.8 g l-1 ) and further growth was likely inhibited due to ethanol toxicity. Proteome analysis as well as enzyme assays performed in cell-free extracts demonstrated that glycerol is degraded via glyceraldehyde-3-phosphate, which is further metabolized through the lower part of glycolysis leading to formation of mainly ethanol and hydrogen. In conclusion, fermentation of glycerol to ethanol and hydrogen by this bacterium represents a remarkable option to add value to the biodiesel industries by utilization of surplus glycerol.

SUBMITTER: Patil Y 

PROVIDER: S-EPMC5270724 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fermentation of glycerol by Anaerobium acetethylicum and its potential use in biofuel production.

Patil Yogita Y   Junghare Madan M   Müller Nicolai N  

Microbial biotechnology 20161222 1


Growth of biodiesel industries resulted in increased coproduction of crude glycerol which is therefore becoming a waste product instead of a valuable 'coproduct'. Glycerol can be used for the production of valuable chemicals, e.g. biofuels, to reduce glycerol waste disposal. In this study, a novel bacterial strain is described which converts glycerol mainly to ethanol and hydrogen with very little amounts of acetate, formate and 1,2-propanediol as coproducts. The bacterium offers certain advanta  ...[more]

Similar Datasets

| S-EPMC8088579 | biostudies-literature
| S-EPMC8285809 | biostudies-literature
| S-EPMC4357469 | biostudies-literature
| S-EPMC11336579 | biostudies-literature
| PRJEB30535 | ENA
| S-EPMC6528989 | biostudies-literature
| S-EPMC8775389 | biostudies-literature
| S-EPMC5743810 | biostudies-literature
| S-EPMC4744455 | biostudies-literature
| S-EPMC8880020 | biostudies-literature