Project description:X-linked recessive myotubular myopathy (XLMTM) is a severe congenital muscle disorder caused by mutations in the MTM1 gene and characterized by severe hypotonia and generalized muscle weakness in affected males. It is generally a fatal disorder during the neonatal period and early infancy. The diagnosis is based on typical histopathological findings on muscle biopsy, combined with suggestive clinical features. We experienced a case of a newborn who required intubation and ventilator care because of profound hypotonia and respiratory difficulty. The preliminary diagnosis at the time of request for retrieval was hypoxic ischemic encephalopathy, but the infant was clinically reevaluated for generalized weakness and muscle atrophy. Muscle biopsies showed variability in fiber size and centrally located nuclei in nearly all the fibers. We detected an MTM1 gene mutation of c.1261-1C>A in the intron 10 region, and diagnosed the neonate with myotubular myopathy. The same mutation was detected in his mother.
Project description:Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the ?-subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero- or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia. In vitro functional assessment in HEK293 cells of the impact of the identified SCN4A mutations showed loss-of-function of the mutant Nav1.4 channels. All, apart from one, of the mutations either caused fully non-functional channels, or resulted in a reduced channel activity. Each of the affected cases carried at least one full loss-of-function mutation. In five out of six families, a second loss-of-function mutation was present on the trans allele. These functional results provide convincing evidence for the pathogenicity of the identified mutations and suggest that different degrees of loss-of-function in mutant Nav1.4 channels are associated with attenuation of the skeletal muscle action potential amplitude to a level insufficient to support normal muscle function. The results demonstrate that recessive loss-of-function SCN4A mutations should be considered in patients with a congenital myopathy.
Project description:ObjectiveTo report a series of 11 patients on the severe end of the spectrum of ryanodine receptor 1 (RYR1) gene-related myopathy, in order to expand the clinical, histologic, and genetic heterogeneity associated with this group of patients.MethodsEleven patients evaluated in the neonatal period with severe neonatal-onset RYR1-associated myopathy confirmed by genetic testing were ascertained. Clinical features, molecular testing results, muscle imaging, and muscle histology are reviewed.ResultsClinical features associated with the severe neonatal presentation of RYR1-associated myopathy included decreased fetal movement, hypotonia, poor feeding, respiratory involvement, arthrogryposis, and ophthalmoplegia in 3 patients, and femur fractures or hip dislocation at birth. Four patients had dominant RYR1 mutations, and 7 had recessive RYR1 mutations. One patient had a cleft palate, and another a congenital rigid spine phenotype-findings not previously described in the literature in patients with early-onset RYR1 mutations. Six patients who underwent muscle ultrasound showed relative sparing of the rectus femoris muscle. Histologically, all patients with dominant mutations had classic central cores on muscle biopsy. Patients with recessive mutations showed great histologic heterogeneity, including fibrosis, variation in fiber size, skewed fiber typing, very small fibers, and nuclear internalization with or without ill-defined cores.ConclusionsThis series confirms and expands the clinical and histologic variability associated with severe congenital RYR1-associated myopathy. Both dominant and recessive mutations of the RYR1 gene can result in a severe neonatal-onset phenotype, but more clinical and histologic heterogeneity has been seen in those with recessive RYR1 gene mutations. Central cores are not obligatory histologic features in recessive RYR1 mutations. Sparing of the rectus femoris muscle on imaging should prompt evaluation for RYR1-associated myopathy in the appropriate clinical context.
Project description:FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein.
Project description:We ascertained a nuclear family in which three of four siblings were affected with an unclassified autosomal recessive myopathy characterized by severe weakness, respiratory impairment, scoliosis, joint contractures, and an unusual combination of dystrophic and myopathic features on muscle biopsy. Whole genome sequence from one affected subject was filtered using linkage data and variant databases. A single gene, MEGF10, contained nonsynonymous mutations that co-segregated with the phenotype. Affected subjects were compound heterozygous for missense mutations c.976T?>?C (p.C326R) and c.2320T?>?C (p.C774R). Screening the MEGF10 open reading frame in 190 patients with genetically unexplained myopathies revealed a heterozygous mutation, c.211C?>?T (p.R71W), in one additional subject with a similar clinical and histological presentation as the discovery family. All three mutations were absent from at least 645 genotyped unaffected control subjects. MEGF10 contains 17 atypical epidermal growth factor-like domains, each of which contains eight cysteine residues that likely form disulfide bonds. Both the p.C326R and p.C774R mutations alter one of these residues, which are completely conserved in vertebrates. Previous work showed that murine Megf10 is required for preserving the undifferentiated, proliferative potential of satellite cells, myogenic precursors that regenerate skeletal muscle in response to injury or disease. Here, knockdown of megf10 in zebrafish by four different morpholinos resulted in abnormal phenotypes including unhatched eggs, curved tails, impaired motility, and disorganized muscle tissue, corroborating the pathogenicity of the human mutations. Our data establish the importance of MEGF10 in human skeletal muscle and suggest satellite cell dysfunction as a novel myopathic mechanism.
Project description:Congenital myopathies define a heterogeneous group of neuromuscular diseases with neonatal or childhood hypotonia and muscle weakness. The genetic cause is still unknown in many patients, precluding genetic counselling and better understanding of the physiopathology. To identify novel genetic causes of congenital myopathies, exome sequencing was performed in three consanguineous families. We identified two homozygous frameshift mutations and a homozygous nonsense mutation in the mitogen-activated protein triple kinase ZAK. In total, six affected patients carry these mutations. Reverse transcription polymerase chain reaction and transcriptome analyses suggested nonsense mRNA decay as a main impact of mutations. The patients demonstrated a generalized slowly progressive muscle weakness accompanied by decreased vital capacities. A combination of proximal contractures with distal joint hyperlaxity is a distinct feature in one family. The low endurance and compound muscle action potential amplitude were strongly ameliorated on treatment with anticholinesterase inhibitor in another patient. Common histopathological features encompassed fibre size variation, predominance of type 1 fibre and centralized nuclei. A peculiar subsarcolemmal accumulation of mitochondria pointing towards the centre of the fibre was a novel histological hallmark in one family. These findings will improve the molecular diagnosis of congenital myopathies and implicate the mitogen-activated protein kinase (MAPK) signalling as a novel pathway altered in these rare myopathies.
Project description:Congenital aniridia is a complex ocular disorder, usually associated with severe visual impairment, generally caused by mutations on the PAX6 gene. The clinical phenotype of PAX6 mutations is highly variable, making the genotype-phenotype correlations difficult to establish. we describe the phenotype of eight patients from seven unrelated families with confirmed mutations in PAX6, and very different clinical manifestations. Only two patients had the classical aniridia phenotype while the other two presented with aniridia-related manifestations, such as aniridia-related keratopathy or partial aniridia. Congenital cataracts were the main manifestation in three of the patients in this series. All the patients had nystagmus and low visual acuity. The diagnosis of mild forms of aniridia is challenging, but these patients have a potentially blinding hereditary disease that might present with a more severe phenotype in future generations. Clinicians should be aware of the mild aniridia phenotype and request genetic testing to perform an accurate diagnosis.
Project description:Visceral myopathies (VMs) encompass a spectrum of disorders characterized by chronic disruption of gastrointestinal function, with or without urinary system involvement. Pathogenic missense variation in smooth muscle γ-actin gene (ACTG2) is associated with autosomal dominant VM. Whole-genome sequencing of an infant presenting with chronic intestinal pseudo-obstruction revealed a homozygous 187 bp (c.589_613 + 163del188) deletion spanning the exon 6-intron 6 boundary within ACTG2 The patient's clinical course was marked by prolonged hospitalizations, multiple surgeries, and intermittent total parenteral nutrition dependence. This case supports the emerging understanding of allelic heterogeneity in ACTG2-related VM, in which both biallelic and monoallelic variants in ACTG2 are associated with gastrointestinal dysfunction of similar severity and overlapped clinical presentation. Moreover, it illustrates the clinical utility of rapid whole-genome sequencing, which can comprehensively and precisely detect different types of genomic variants including small deletions, leading to guidance of clinical care decisions.
Project description:ObjectiveRecessive null variants of the slow skeletal muscle troponin T1 (TNNT1) gene are a rare cause of nemaline myopathy that is fatal in infancy due to respiratory insufficiency. Muscle biopsy shows rods and fiber type disproportion. We report on 4 French Canadians with a novel form of recessive congenital TNNT1 core-rod myopathy.MethodsPatients underwent full clinical characterization, lower limb magnetic resonance imaging (MRI), muscle biopsy, and genetic testing. A zebrafish loss-of-function model using morpholinos was created to assess the pathogenicity of the identified variant. Wild-type or mutated human TNNT1 mRNAs were coinjected with morpholinos to assess their abilities to rescue the morphant phenotype.ResultsThree adults and 1 child shared a novel missense homozygous variant in the TNNT1 gene (NM_003283.6: c.287T > C; p.Leu96Pro). They developed from childhood very slowly progressive limb-girdle weakness with rigid spine and disabling contractures. They suffered from restrictive lung disease requiring noninvasive mechanical ventilation in 3 patients, as well as recurrent episodes of rhabdomyolysis triggered by infections, which were relieved by dantrolene in 1 patient. Older patients remained ambulatory into their 60s. MRI of the leg muscles showed fibrofatty infiltration predominating in the posterior thigh and the deep posterior leg compartments. Muscle biopsies showed multiminicores and lobulated fibers, rods in half the patients, and no fiber type disproportion. Wild-type TNNT1 mRNA rescued the zebrafish morphants, but mutant transcripts failed to do so.InterpretationThis study expands the phenotypic spectrum of TNNT1 myopathy and provides functional evidence for the pathogenicity of the newly identified missense mutation. ANN NEUROL 2020;87:568-583.
Project description:BackgroundAuditory neuropathy spectrum disorder (ANSD) is a form of hearing loss in which auditory signal transmission from the inner ear to the auditory nerve and brain stem is distorted, giving rise to speech perception difficulties beyond that expected for the observed degree of hearing loss. For many cases of ANSD, the underlying molecular pathology and the site of lesion remain unclear. The X-linked form of the condition, AUNX1, has been mapped to Xq23-q27.3, although the causative gene has yet to be identified.MethodsWe performed whole-exome sequencing on DNA samples from the AUNX1 family and another small phenotypically similar but unrelated ANSD family.ResultsWe identified two missense mutations in AIFM1 in these families: c.1352G>A (p.R451Q) in the AUNX1 family and c.1030C>T (p.L344F) in the second ANSD family. Mutation screening in a large cohort of 3 additional unrelated families and 93 sporadic cases with ANSD identified 9 more missense mutations in AIFM1. Bioinformatics analysis and expression studies support this gene as being causative of ANSD.ConclusionsVariants in AIFM1 gene are a common cause of familial and sporadic ANSD and provide insight into the expanded spectrum of AIFM1-associated diseases. The finding of cochlear nerve hypoplasia in some patients was AIFM1-related ANSD implies that MRI may be of value in localising the site of lesion and suggests that cochlea implantation in these patients may have limited success.