Ontology highlight
ABSTRACT: Objective
This report presents tenofovir (TFV) alafenamide (TAF) and elvitegravir (EVG) fabricated into nanoparticles for subcutaneous delivery as prevention strategy.Design
Prospective prevention study in humanized bone marrow-liver-thymus (hu-BLT) mice.Methods
Using an oil-in-water emulsion solvent evaporation technique, TAF + EVG drugs were entrapped together into nanoparticles containing poly(lactic-co-glycolic acid). In-vitro prophylaxis studies (90% inhibition concentration) compared nanoparticles with drugs in solution. Hu-BLT (n = 5/group) mice were given 200 mg/kg subcutaneous, and vaginally challenged with HIV-1 [5 × 10 tissue culture infectious dose for 50% of cells cultures (TCID50)] 4 and 14 days post-nanoparticle administration (post-nanoparticle injection). Control mice (n = 5) were challenged at 4 days. Weekly plasma viral load was performed using RT-PCR. Hu-BLT mice were sacrificed and lymph nodes were harvested for HIV-1 viral RNA detection by in-situ hybridization. In parallel, CD34 humanized mice (3/time point) compared TFV and EVG drug levels in vaginal tissues from nanoparticles and solution. TFV and EVG were analyzed from tissue using liquid chromatograph-tandem mass spectrometry (LC-MS/MS).Results
TAF + EVG nanoparticles were less than 200 nm in size. In-vitro prophylaxis indicates TAF + EVG nanoparticles 90% inhibition concentration was 0.002 μg/ml and TAF + EVG solution was 0.78 μg/ml. TAF + EVG nanoparticles demonstrated detectable drugs for 14 days and 72 h for solution, respectively. All hu-BLT control mice became infected within 14 days after HIV-1 challenge. In contrast, hu-BLT mice that received nanoparticles and challenged at 4 days post-nanoparticle injection, 100% were uninfected, and 60% challenged at 14 days post-nanoparticle injection were uninfected (P = 0.007; Mantel-Cox test). In-situ hybridization confirmed these results.Conclusion
This proof-of-concept study demonstrated sustained protection for TAF + EVG nanoparticles in a hu-BLT mouse model of HIV vaginal transmission.
SUBMITTER: Mandal S
PROVIDER: S-EPMC5283613 | biostudies-literature | 2017 Feb
REPOSITORIES: biostudies-literature
Mandal Subhra S Prathipati Pavan K PK Kang Guobin G Zhou You Y Yuan Zhe Z Fan Wenjin W Li Qingsheng Q Destache Christopher J CJ
AIDS (London, England) 20170201 4
<h4>Objective</h4>This report presents tenofovir (TFV) alafenamide (TAF) and elvitegravir (EVG) fabricated into nanoparticles for subcutaneous delivery as prevention strategy.<h4>Design</h4>Prospective prevention study in humanized bone marrow-liver-thymus (hu-BLT) mice.<h4>Methods</h4>Using an oil-in-water emulsion solvent evaporation technique, TAF + EVG drugs were entrapped together into nanoparticles containing poly(lactic-co-glycolic acid). In-vitro prophylaxis studies (90% inhibition conce ...[more]