Unknown

Dataset Information

0

Targeted nanoparticles encapsulating (-)-epigallocatechin-3-gallate for prostate cancer prevention and therapy.


ABSTRACT: Earlier we introduced the concept of 'nanochemoprevention' i.e. the use of nanotechnology to improve the outcome of cancer chemoprevention. Here, we extended our work and developed polymeric EGCG-encapsulated nanoparticles (NPs) targeted with small molecular entities, able to bind to prostate specific membrane antigen (PSMA), a transmembrane protein that is overexpressed in prostate cancer (PCa), and evaluated their efficacy in preclinical studies. First, we performed a molecular recognition of DCL- and AG-PEGylation on ligand binding on PSMA active site. Next, the biocompatible polymers PLGA-PEG-A were synthesized and used as base to conjugate DCL or AG to obtain the respective copolymers, needed for the preparation of targeted NPs. The resulting EGCG encapsulating NPs led to an enhanced anti-proliferative activity in PCa cell lines compared to the free EGCG. The behavior of EGCG encapsulated in NPs in modulating apoptosis and cell-cycle, was also determined. Then, in vivo experiments, in mouse xenograft model of prostatic tumor, using EGCG-loaded NPs, with a model of targeted nanosystems, were conducted. The obtained data supported our hypothesis of target-specific enhanced bioavailability and limited unwanted toxicity, thus leading to a significant potential for probable clinical outcome.

SUBMITTER: Sanna V 

PROVIDER: S-EPMC5286400 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Targeted nanoparticles encapsulating (-)-epigallocatechin-3-gallate for prostate cancer prevention and therapy.

Sanna Vanna V   Singh Chandra K CK   Jashari Rahime R   Adhami Vaqar M VM   Chamcheu Jean Christopher JC   Rady Islam I   Sechi Mario M   Mukhtar Hasan H   Siddiqui Imtiaz A IA  

Scientific reports 20170201


Earlier we introduced the concept of 'nanochemoprevention' i.e. the use of nanotechnology to improve the outcome of cancer chemoprevention. Here, we extended our work and developed polymeric EGCG-encapsulated nanoparticles (NPs) targeted with small molecular entities, able to bind to prostate specific membrane antigen (PSMA), a transmembrane protein that is overexpressed in prostate cancer (PCa), and evaluated their efficacy in preclinical studies. First, we performed a molecular recognition of  ...[more]

Similar Datasets

| S-EPMC6579691 | biostudies-literature
2024-07-17 | GSE208144 | GEO
| S-EPMC3546223 | biostudies-literature
| S-EPMC8428179 | biostudies-literature
| S-EPMC7267698 | biostudies-literature
| S-EPMC6678710 | biostudies-literature