Development of pharmacophore models for small molecules targeting RNA: Application to the RNA repeat expansion in myotonic dystrophy type 1.
Ontology highlight
ABSTRACT: RNA is an important drug target, but current approaches to identify bioactive small molecules have been engineered primarily for protein targets. Moreover, the identification of small molecules that bind a specific RNA target with sufficient potency remains a challenge. Computer-aided drug design (CADD) and, in particular, ligand-based drug design provide a myriad of tools to identify rapidly new chemical entities for modulating a target based on previous knowledge of active compounds without relying on a ligand complex. Herein we describe pharmacophore virtual screening based on previously reported active molecules that target the toxic RNA that causes myotonic dystrophy type 1 (DM1). DM1-associated defects are caused by sequestration of muscleblind-like 1 protein (MBNL1), an alternative splicing regulator, by expanded CUG repeats (r(CUG)exp). Several small molecules have been found to disrupt the MBNL1-r(CUG)exp complex, ameliorating DM1 defects. Our pharmacophore model identified a number of potential lead compounds from which we selected 11 compounds to evaluate. Of the 11 compounds, several improved DM1 defects both in vitro and in cells.
SUBMITTER: Angelbello AJ
PROVIDER: S-EPMC5286915 | biostudies-literature | 2016 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA